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Ultracold few-fermion systems in multiwell potentials:

This thesis reports on the development and the commissioning of a new setup
for the deterministic preparation of ultracold few-fermion systems in a tunable
optical potential.
The two key elements of this new setup are a custom-designed high-resolution
objective and an acousto-optic deflector (AOD) which are used to create arbitrary
potentials with a resolution of ≈ 1 µm. Both, the objective and the AOD have been
characterized individually in a test setup and combined into a compact setup which
was integrated into the existing experiment. With the new setup we observed an
improved stability of the preparation of few-particle systems which suggests a
decrease of the focus size compared to the old setup. We characterized the new
microtrap by measuring its trap frequencies which we found to be consistent with
the results obtained in the test setup.
As a first test of the AOD we created a tunable double-well potential and loaded
two non-interacting atoms into one of the two wells. By tuning the relative depth
of the two wells we could observe resonant tunneling with high contrast and long
coherence times. This shows that we can control the created potentials with high
accuracy.

Ultrakalte Systeme aus wenigen Fermionen in mehreren
Potentialtöpfen:

Diese Arbeit beschreibt Entwicklung und Inbetriebnahme eines neuen Aufbaus
zur deterministischen Präparation von ultrakalten Systemen mit wenig Fermionen
in einem einstellbaren optischen Potential.
Die beiden Hauptelemente dieses neuen Aufbaus sind ein maßgeschneidertes
hochauflösendes Objektiv und ein akusto-optischer Deflektor (AOD), die verwendet
werden um beliebige Potentiale mit einer Auflösung von ≈ 1 µm zu erzeugen.
Das Objektiv und der AOD wurden jeweils einzeln in einem Versuchsaufbau
charakterisiert und dann in einem kompakten Aufbau kombiniert, der in das
bestehende Experiment integriert wurde. Mit dem neuen Aufbau erreichten wir
eine verbesserte Präparationsstabilität der Wenig-Teilchen-Systeme, was eine
verminderte Fokusgröße im Vergleich zum vorherigen Aufbau vermuten lässt. Mit
der Messung der Fallenfrequenzen wurde die neue Mikrofalle charakterisiert und
es wurden mit dem Testaufbau konsistente Ergebnisse erzielt.
Zum Testen des AODs haben wir ein variables Doppeltopfpotential erzeugt und
zwei nicht wechselwirkende Atome in einen der beiden Töpfe geladen. Durch
Einstellen der relativen Topftiefen konnten wir resonantes Tunneln mit hohem
Kontrast und langer Kohärenzzeit beobachten. Dies zeigt, dass wir die erzeugten
Potentiale mit hoher Präzision kontrollieren können.
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Chapter 1

Introduction

Observing the consequences of quantum statistics requires a system where the inter-
particle spacing is comparable to the thermal de Broglie wavelength. For a long time
this regime could only be reached in systems of high particle density, until in the last
two decades it became possible to cool dilute samples of neutral atoms to low enough
temperatures. At these temperatures the description as a Boltzman gas of classical
particles breaks down and the behavior of the atoms differs according to their bosonic
or fermionic nature. For bosonic systems a phase transition was predicted where the
ground state of the system is populated collectively. This so-called Bose-Einstein
condensation was first observed in 1995 [Dav95, And95]. For identical fermions
collective population of individual states is forbidden due to the Pauli principle.
In the limit of zero temperature all available quantum states are filled with one
particle per state up to the so-called Fermi energy. For finite temperature this step
function is washed out and the occupation probability of the lowest states decreases
with increasing temperature according to the Fermi-Dirac distribution. Quantum
degeneracy in systems of ultracold fermions was first observed in 1999 [DeM99] where
the temperature of the sample was significantly lower than the Fermi energy.
The main advantage of ultracold quantum gases is that their inter-particle inter-

action is based on simple two-body scattering and can be very well controlled in
strength and sign [Ino98]. This makes ultracold gases particularly suited to study
many-body systems with strong interactions where theoretical models cannot be
restricted to perturbation theory. Hamiltonians which are difficult to solve in the-
ory can be mapped on the many-body Hamiltonian of ultracold gases and studied
experimentally. Experiments with quantum gases then act as quantum simulators.
One prominent example is the crossover between BEC- and BCS-pairing of fermions.
This connection between the limiting cases of a molecular BEC and a BCS-superfluid
had been discussed in solid state physics for a long time. However, an experimental
realization could not be established until 2004 in ultracold gases [Bar04].

The BCS phase like many other problems in solid state physics has its origin in the
interplay between the electron motion and the crystalline structure of solids. For very
weak lattice potentials the electrons travel through the crystal nearly unperturbed.
For deeper lattice potentials not all energies in the spectrum are allowed for the
electrons. These bands in energy are separated by band gaps. If the highest band is
partly filled with electrons an applied electric field can cause a net electron transport
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Chapter 1 Introduction

and the material is conducting. If the bands are all completely filled the net electron
transport is zero. These materials are called band insulators. The stronger the
periodic potential gets the narrower the bands become until the electrons are so
tightly bound that they are localized primarily on one lattice site.

The structure and filling of the bands gives a valid description of conductivity in
a crystalline solid. However, especially for strong periodic potentials the repulsive
Coulomb interaction between the electrons with opposite spin can compete with
tunneling between the sites. This leads to correlations or even insulation in the
system.
A model that describes the competition between the metallic behavior and the

Coulomb repulsion sufficiently well is the Hubbard model [Hub63]. It assumes a
system of sites filled with spin-up and spin-down electrons. The hopping from one
site to the other as well as the interaction between two electrons with different spin
occupying the same site are included. In the limit of one single band, there are two
well understood cases. If there are two electrons with different spin per site the band
is filled and there is no conduction at all. For half-filling, i. e. every site of the system
is occupied with one electron in average, the physics depends on the hopping and
the strength of the repulsive interaction. If the interaction between the electrons is
infinitely large, hopping to adjacent sites is suppressed in the ground state. With the
localized electrons this system is in an insulating state although the band is not filled.
This state is called a Mott-insulator. If, however, the repulsive interaction between
electrons with different spin is large but finite, virtual hopping to adjacent sites can
lower the kinetic energy of the system. Due to the Pauli principle the virtual hopping
is only possible to sites which are occupied by electrons with opposite spin. Since
the delocalization of the electrons lowerst the energy of the system, this effect leads
to an anti-ferromagnetic ordering in the lattices.

For any deviation from half-filling the systems get very difficult to solve in theory.
Fortunately it turned out that the Hubbard model can be perfectly simulated by ul-
tracold atoms [Jak98]. The periodic structure of the ions in the solid can be mimicked
by a periodical optical potential structure into which fermionic atoms are loaded.
These optical lattice structures can have different geometries and dimensionalities
and with their depth the strength of tunneling can be controlled [Blo05]. The on-site
Coulomb interaction is replaced by the contact interaction between fermions with
different spins. In contrast to solid state systems this interaction can be tuned in
the ultracold atom system. With these two tunable parameters the different phase
configurations of the Fermi-Hubbard model can be investigated. Recently, it has even
become possible to observe these effects via single-site resolution on the microscopic
scale [Bak09, She10].
With optical lattice experiments the predicted fermionic Mott-insulator phase

has recently been realized [Jö08, Sch08] and first nearest-neighbor correlations of
fermions in a double-well lattice have been shown [Gre13]. The direct observation
of long-range anti-ferromagnetic ordering, however, is hampered by the low entropy
that is required for long-range order to appear in the system. In fermionic samples
evaporative cooling to degeneracy gets inefficient at low temperatures due to Pauli-
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blocking and technical noise during the transfer into the lattice potential tends
to increase the entropy further. Thus, the currently lowest achievable entropies
for a cold fermi gas in a lattice potential are by a factor of two larger than the
required transition entropy to end in the anti-ferromagnetically ordered Néel phase
[Wer05, Jö10]. Therefore, a lot of effort is currently put into the development of new
cooling techniques for quantum gases in optical lattice [McK11].

With our experiment we intend to develop and test a new preparation technique in
a well-controlled few-particle system that overcomes this entropy limitation. We are
able to prepare number states of fermions in an optical dimple trap in their ground
state with a high fidelity [Ser11b]. The fact that in the dimple trap each level up to
a distinct energy is occupied with almost 100% probability and all higher levels are
empty results in a very low entropy per particle in our single-trap system. If we can
extend our system to a few-site potential while keeping the entropy per particle lower
than the Néel entropy this should allow us to directly observe anti-ferromagnetic
ordering. In this thesis the first step towards this goal was made by the creation and
control of a double-well potential.
In chapter 2 the basic theoretical concepts and conditions of anti-ferromagnetic

ordering in the Fermi-Hubbard model are introduced and the double-well potential
as its simplest realization is presented. Chapter 3 describes our experiment for high-
fidelity preparation of a few-fermion system in a single microtrap. It also introduces
our established tools for the control and read-out of the few-particle system. The
new microtrap setup which provides more flexibility and higher preparation fidelity
is described in detail in chapter 4. Here special emphasis is given to the new high-
resolution objective and the acousto-optic deflector which allows for the creation of
few-site potentials. The implementation and characterization of the new setup as
well as the first measurements on a double-well potential are described in chapter 5.
In chapter 6 we conclude and give a brief outlook for the next experimental steps
towards the observation of magnetic correlations in our system.
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Chapter 2

Cold fermions as quantum
simulators of the Fermi-Hubbard
model

The properties of solid state materials are mostly governed by the behavior of the
valence electrons in the material. However, an exact microscopic description of the
entire system of electrons including electron-electron interaction, electron-lattice
interaction, etc. is very complex and impossible to solve. For nevertheless describing
a special effect in condensed matter physics, the problem is simplified by a restriction
to the relevant parameters. To explain, e. g., conduction in metals the model of a
free electron gas gives a good approximation.
Magnetic ordering in solid state crystals is another issue in condensed matter

physics. One of the simplest models to describe electrons that align their spins in a
collective way is the Heisenberg model. It assumes the electrons to be pinned on
their lattice sites with a spin-spin interaction between the adjacent sites. However,
the model of fixed electrons cannot explain the nature of this coupling mechanism.
More realistic descriptions include also hopping of electrons in a periodic lattice

potential. Together with the electron-electron interaction this can give rise to
collective phenomena in the system. One theoretical model that captures this
interplay between hopping and interaction is the Hubbard model [Hub63]. It contains
the Heisenberg model as one limit and thus allows to study the mechanism of magnetic
ordering and other linked phenomena.

Solving the Hubbard model analytically is only possible in some limits. Recently,
it has been suggested to mimic the model by ultracold gases in optical lattices
[Jak98]. The periodic potential can be created by optical lattices into which cold
fermionic atoms are loaded to simulate the electrons in the solid state. As ultracold
gases provide a high level of control over parameters which are predetermined in
solid states one hopes to get new insights into this field of physics by using them as
quantum simulators.
This chapter will deal with the conceptional steps from magnetism to ultracold

gases. Section 2.1 introduces the exchange mechanism that mediates magnetism
in crystalline solids. Based on [Yos96] and [McK11] the Fermi-Hubbard models of
solid state physics and of ultracold gases are introduced in section 2.2. The different
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Chapter 2 Cold fermions as quantum simulators of the Fermi-Hubbard model

phases appearing in this kind of systems will be discussed with a special focus on
magnetic ordering. In section 2.3 the minimal realization of a finite Fermi-Hubbard
system will be discussed, the double-well potential, which will be experimentally
feasible with our new setup.

2.1 Mediation of magnetic ordering
The emergence of magnetism is based on collective ordering of the magnetic moments
of electrons in a solid due to spin-spin interaction. However, simple magnetic dipolar
interaction is much too weak to explain the spin alignment. Instead the interaction is
purely based on quantum mechanics that claims anti-symmetrization of the electron
wavefunctions and thus leads to an effective spin-spin interaction.

To understand the interaction mechanism that lies at the heart of long-range
magnetic order, we consider two electrons located at r1 and r2. They interact via
Coulomb interaction. To describe the system we choose an ansatz where we take the
product of the single wavefunctions to construct the total wavefunction of the system
Ψ(r1, r2,S1,S2). As the two electrons are indistinguishable the total wavefunction
has to be anti-symmetric and obey exchange symmetry. Thus, the two possible
eigenfunctions are

ΨS = 1√
2

(ψa(r1)ψb(r2) + ψa(r2)ψb(r1))χS and (2.1)

ΨT = 1√
2

(ψa(r1)ψb(r2)− ψa(r2)ψb(r1))χT (2.2)

with the anti-symmetric singlet (S=0) spin wavefunction χS = 1√
2(|↑↓〉−|↓↑〉) and the

three degenerate symmetric triplet spin wavefunctions χT (S=1). The corresponding
eigenenergies are given by the singlet eigenenergy ES and the triplet eigenenergy
ET . In the singlet state, the spins are aligned anti-parallel, whereas in the triplet
state they are aligned parallel. So, the energy difference between singlet and triplet
state decides the spin alignment of the ground state of the system. This difference
depends on the exchange integral

ES − ET = 2
∫∫

ψ∗a(r1)ψ∗b(r2)Hψa(r2)ψb(r1)dr1dr2 (2.3)

with H being the Hamiltonian of the system.
We want to re-write the Hamiltonian of the system in a form that contains only

products of the spin functions S1 and S2. With the three equal eigenvalues ET and
one eigenvalue ES it describes the spin alignment and takes the form

Heff = 1
4(ES + 3ET )− (ES − ET )S1 · S2 (2.4)

= const.− 2J S1 · S2 . (2.5)
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2.2 The Fermi-Hubbard model

where the exchange energy is now represented by a single parameter J . If its value is
positive, the spins align in the triplet state; if it is negative, they align in the singlet
state.

To describe the many-body behavior in a large system of magnetic moments fixed
on lattice sites we extend the two-particle Hamiltonian to the so-called Heisenberg
model

H = −
∑
i j

JijSi · Sj (2.6)

where we sum over the different lattice sites i, j. In the following we restrict ourselves
to interactions between adjacent sites which are described by one parameter J . A
positive value of J then correspond to a ferromagnetic alignment, a negative to
anti-ferromagnetic ordering. So, the exchange symmetry of the overlapping single-
particle wavefunctions causes a long-range alignment of the magnetic moments in
the material.

In many transition metals the electrons’ wavefunction overlap between the adjacent
ions is zero. One prominent example is MnO, where the electrons sit on the Mn2+-ions
which are separated by oxygen O2− ions with filled electron shells. In materials with
this kind of structure1 one would not expect magnetic ordering due to a lack of
direct exchange. Nevertheless, anti-ferromagnetic ground states are observed. An
explanation for this fact was proposed by Kramers [Kra34] assuming an indirect
exchange mechanism mediated via the full p-orbital of the ligands in a second order
process, the superexchange. In MnO the electrons on the manganese ions align
such that they are able to virtually hop to the p-orbitals of the oxygen ions. This
delocalization parametrized by the hopping parameter t lowers the kinetic energy of
the system [And59]. However, two electrons sitting on the same site repel each other
with the Coulomb interaction U . This interplay results in an interaction that has
the same spin-dependence as expressed in (2.6). In the limit where hopping can be
treated as a perturbation the superexchange parameter amounts to J = −4t2/U and
explains the anti-ferromagnetic ordering in the transition-metal salts.

2.2 The Fermi-Hubbard model
For the description of dynamics and phase transitions in a solid a model like the
Heisenberg model with fixed electrons is not suited. A more general model Hamilto-
nian is necessary that has the Heisenberg model as a limit but also contains tunneling
and on-site interaction of the electrons to explain electron correlation effects like
superconductivity or magnetic phases.

In general the Hamiltonian describing motion and interaction of the electrons in a
lattice can be parametrized as

H = Hcrystal +Hint (2.7)
1The insulating material La2CuO4 [Aha88] being the basis for the high-temperature supercon-
ducting La2−x(Sr,Ba)xCuO4−y also shows this kind of structure and exhibits anti-ferromagnetic
ordering.
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Chapter 2 Cold fermions as quantum simulators of the Fermi-Hubbard model

where the one-body Hamiltonian Hcrystal contains the kinetic energy of the electrons
and the periodic potential and Hint describes the Coulomb interaction between two
electrons.
The limit of deep periodic potentials where the electrons are primarily localized

around the ion positions is of special interest. It is thus suitable to describe the
system in the Wannier basis wi(r) which is a complete orthogonal eigenbasis in
position space reflecting the localization around the sites i. We further restrict
ourselves to tunneling of the electrons between adjacent sites and interaction between
electrons occupying the same site. This is justified by the deep lattice and the
screened Coulomb potential of the electrons due to underlying closed electron shells
[Ima98]. In addition, the relevant energy scales shall be small compared to the
excitation energy required to lift electrons into the next higher band of the lattice
potential.
For a homogeneous system the single electron tunneling rate t and the on-site

interaction energy U between two electrons with opposite spin can be written in the
Wannier basis as

t =
∫
w∗i (r)Hcrystalwj(r)dr and (2.8)

U =
∫∫
|wi(r1)|2Hint|wi(r2)|2dr1dr2 . (2.9)

Using the two parameters the system’s Hamiltonian can be rewritten in second
quantization

H = −t
∑
σ,〈i,j〉

a†iσajσ + U
∑
j

nj↓nj↑ . (2.10)

with 〈i, j〉 denoting the summation over adjacent sites. The creation (annihilation) op-
erator a†iσ (aiσ) for both spin components σ =↑, ↓ obey the fermionic anti-commutation
relation and ni,σ = a†iσaiσ is the occupation number operator. (2.10) is called the
Hubbard Hamiltonian. The first term expresses the kinetic energy, the second term
the Coulomb interaction of the system.

The relative sizes of the two terms describe the physics of the system. For vanishing
on-site interaction (2.10) becomes a single-particle Hamiltonian with the movement
of the conduction electrons in the crystal described by Bloch waves. In the limit of
t� U , the interaction can be treated as perturbation. The electrons move around
the whole crystal but the states where two electrons sit on one site are suppressed
which leads to strong correlations.

For an increase of the ratio U/t in a half-filled lattice, i. e. one electron per lattice
site, the Hubbard model predicts a phase transition from a conducting state to an
insulating state where the electrons tend to be localized on the lattice sites due to
the strong on-site interaction. This phase is called a Mott insulator. Note that it
contains no spin alignment.

In the limit of large interaction U →∞ the tunneling can be treated as perturbation.
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2.2 The Fermi-Hubbard model

For half filling, the Hamiltonian can be reduced to the Heisenberg Hamiltonian [Yos96]

HHeisenberg ∝
4 t2
U

∑
〈i,j〉

Si · Sj . (2.11)

In this limit we expect anti-ferromagnetic ordering at low enough temperatures due
to the superexchange (cf. section 2.1). If the first term in the Hubbard Hamiltonian
vanishes completely the electrons are localized at the lattices sites and neither
tunneling nor ordering occurs.
The fact that tunneling and interaction in a lattice are described by only two

parameters makes the Hubbard model very simple. Nevertheless, it is not analytically
solvable except for the mentioned limiting cases t� U and U � t in a half-filling
configuration. Due to the sheer size of the system the computational analysis of the
Hubbard model is still a topic of ongoing investigations.

2.2.1 The Fermi-Hubbard model of ultracold gases
In 1998 it has been pointed out by Jaksch et al. [Jak98] that ultracold atoms in a
lattice can simulate the Hubbard model. The electrons are mimicked by two hyperfine
components of cold fermionic atoms and the ionic crystal is simulated by an optical
lattice creating a periodic potential. This leads to the Fermi-Hubbard Hamiltonian
with similar form as in equation (2.10)2 with the corresponding tunneling and on-site
interaction parameters

t =
∫
w∗i (r)

[
− h̄2

2m∇
2 + V (r)

]
wj(r)dr and (2.12)

U = Vint

∫
|w(r)|4dr . (2.13)

V (r) is the periodic potential of the optical lattice that has a often sinusoidal form. In
contrast to the long-range Coulomb interaction between electrons, ultracold fermionic
atoms in different hyperfine states interact via s-wave collisions. This short-range
interaction depends on the scattering length a (cf. section 3.1.3) and has a strength
of Vint = 4πh̄2a

m
, with m being the atomic mass.

With the help of the optical lattice depth and the scattering length, the Hubbard
parameters can be tuned nearly arbitrarily. The tunneling is decreased by increasing
the lattice depth. In addition, the on-site interaction can be tuned by changing the
scattering length a via magnetic Feshbach resonances.
The tunability of the system led to the observation of the transition between

superfluid and Mott insulating state [Jö08, Sch08] for increasing repulsive on-site
2Note that in optical lattices there exists an overall potential. It alters the depths of the different
lattice sites and therefore one actually has to add an addition term

∑
i µi(ni,↑ + ni,↓). In the

system presented in this thesis, however, the depth of the potential wells can be tuned such
that they are equally deep. Thus, the additional term does not have a spatial dependency and
can be omitted.
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Chapter 2 Cold fermions as quantum simulators of the Fermi-Hubbard model

interaction. This phase transition is predicted to be at U/t = 5.8 z with z the
number of nearest neighbors in the system [Jak98]. The experimental realization of
the Mott insulator phase impressively illustrated the applicability of ultracold atoms
as a quantum simulator for condensed matter systems described by the Hubbard
Hamiltonian.

2.2.2 Entering the Néel phase
In spite of the demonstration of the superfluid-to-Mott insulator transition in an
optical lattice the anti-ferromagnetically ordered phase has not been observed yet.
The reason for this is the low transition temperature, the so-called Néel temperature
TN that is necessary to enter the anti-ferromagnetic state. In the limit of the
Heisenberg model, i. e. U/t very large, this temperature is on the order3 of the
superexchange energy TN ∝ 4t2/U . Below, anti-ferromagnetic ordering manifests
itself as an alternating alignment of spin-up and spin-down states, denoted as Néel
phase.

From the point of view of statistical physics, it is not sufficient just to reduce the
temperature of the system. The more important criterion for entering into an ordered
phase is the entropy per particle. We want to estimate an upper boundary for the
entropy of the system by determining the entropy of a non-ordered state. We assume
a temperature of T = 0 and no particle-hole excitations. Our homogeneous system
has N sites that we want to fill with N particles with either spin-up or spin-down.
This results in Ω = 2N possible combinations representing a completely non-ordered
state. The entropy per particle s of that state is then

s = S/N = kBln(Ω)/N = kBln(2) ≈ 0.7kB . (2.14)

The critical entropy per particle sN to enter the Néel phase can be calculated by a
mean field theory of the three dimensional Heisenberg model which gives the same
result. However quantum fluctuations reduce the expected entropy to enter into
the Néel phase by a factor of two [Wer05, DL08, Koe08] such that we can assume
sN/kB ≈ 0.5 ln(2).
Entering this regime would allow for the observation and investigation of the

transition to the anti-ferromagnetic phase as a function of U/t. Still, current lattice
experiments are unable to prepare systems with lower entropies than s = 0.7 kB
[Jö10]. The limitation is the ineffective cooling of fermions to low temperatures
before loading them into the lattice. Therefore many new cooling techniques have
been proposed to access this entropy regime [McK11].

In our experiment we try to pursue another strategy. We established a technique
(cf. section 4) to deterministically prepare ground-state systems of a specific number
of atoms in a single-well potential. In about 90% of the realizations, our system
has the desired atom number and is in the ground state which has an entropy per

3The exact prefactor depends on the lattice and amounts to 0.957 for a cubic lattice [Sta00]
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2.3 The double-well potential

particle of s = 0. In the remaining 10% of our realizations the atom number is not
as desired.

We can estimate the entropy S of our system by taking into account all the possible
preparations that are not the desired state. For this, we use the Shannon entropy
which quantifies information in a system. We sum up the probabilities pi of all the
different states i in which the system ends for a distinct number preparation

S = −
∑
i

pilog2(pi) . (2.15)

For the calculation of the entropy we assumed that the probability for excitations in
our system is negligible and that realizations which only differ by their spin have
equal probability. For the preparation fidelities measured in [Ser11b] this yields an
entropy per particle of s (n = 2) ≈ 0.24 and s (n = 8) ≈ 0.11 with n the intended
number of prepared atoms. However, one should note that the Shannon entropy of
our system cannot be directly compared to the critical entopy for anti-ferromagnetic
order and is therefore only meant as a rough estimate.
The observation of anti-ferromagnetic order would be possible in our system if

atoms could be prepared in multiple wells with low enough entropies. An even higher
initial preparation fidelity will further faciliate this project. A new high-resolution
objective to increase the preparation fidelity has been implemented in the course
of this thesis. It will be presented in section 5.1. The setup to create multiple-well
potentials will be presented in section 4.3.
In order to gain experience with the system of multiple wells and explore its

capabilities, we start with a double-well potential which can already be described by
the Fermi-Hubbard model. The control scheme, the preparations of atoms in this
potential and first tunneling measurements (cf. section 5.3) were also part of this
thesis.

2.3 The double-well potential
Magnetic correlations as presented in section 2.1 can already be explained with a
two-particle system. For their observation two sites are sufficient, as demonstrated
in a lattice of double wells in [Gre13]. These double-well potentials are generated
by superimposing two optical lattices with different lattice periodicity. By tuning
the power in the lattice beams or the scattering length the tunneling and the on-site
interaction energy can be set.

In our experiment we can create an isolated double-well potential by two focused
Gaussian beams that are partially overlapping (cf. figure 2.1). The potential form is
proportional to the intensity distribution of the two superimposed Gaussians. The
Hubbard parameter t can be tuned by altering the separation of the wells d, their
relative depth δ = |I1 − I2| and the total depth Ptot as this changes the overlap
and the form of the wavefunctions in the two wells. Additionally we can tune the
interaction parameter U by changing the scattering length of the particles.
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Chapter 2 Cold fermions as quantum simulators of the Fermi-Hubbard model

d

t

U
Ptot

δ

Figure 2.1: Double-well potential with tunable control parameters. With our
experimental setup we can tune the total depth Ptot of the potential and the
separation of the wells d as well as their individual depths. Thus the potential
tilt δ, the tunneling rate t and the on-site interaction U can be tuned. Note
that U can also be tuned by the changing the inter-particle scattering length.

To calculate the parameters of our double-well system, we reduce the three-
dimensional potential to a symmetric double well in one dimension (1D) along the
connection of the two wells and solve it numerically. This calculation has been
performed by V.Klinkhamer [Kli12] using a reduced potential of the form

V (x, d, δ) ∝ 2Ptot

πw2
0

(
exp

[
−2

(x+ d
2)2

w2
0

]
+ exp

[
−2

(x− d
2)2

w2
0

])
(2.16)

where w0 is the beam waist at the focus and d is the distance of the wells.
For equal depth the two lowest lying eigenstates in the double-well potential are

the anti-symmetric and symmetric superposition of the lowest states on the left
and the right sites ΨS,A = (ΨL ± ΨR)/

√
2. The eigenenergies are denoted as ES,A

with ES ≤ EA. The energies of the left-sited ΨL and the right-sited ΨR are equal.
Suppose we start with an atom sitting on the left site, it is in a superposition of
the two eigenstates ΨS and ΨA. It will oscillate to the right site and back with
an oscillation frequency that is given by the energy difference between the two
eigenstates Ω = 〈ΨL|H |ΨR〉 /2h̄ = (ES − EA)/h̄. This corresponds to twice the
tunneling parameter t described in equation 2.13. The oscillation frequency can be
changed by altering the well separation d or the total potential depth Ptot.
Figure 2.2 a shows the results of the 1D calculation [Kli12] for the tunneling

rate as a function of the well separation. We used the experimentally achievable
parameters of a focus waist of 1.15 µm and a total power in the beams of 100 µW.
With increasing separation of the two wells the tunneling rate decreases. For a fixed
separation of 2.16 µm the tunneling rate as a function of the total power is shown in
Figure 2.2 b. For increasing trap depth, the wave function gets more localized which
leads to a decrease of the tunneling rate. So, by changing the power by one order
of magnitude we can tune the tunneling rate by three orders of magnitude. This
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Figure 2.2: Tunability of the tunneling rate for experimentally achievable param-
eters. (left) shows the tunneling rate at a total power of 100 µW as a function
of the well separation. (right) depicts the tunneling rate t for a well separation
of 2.16 µm as a function of the total power in the potential. For growing well
separation and total power the tunneling decreases.

enables us to switch the tunneling on and off as the accessible measurement time
scales in our system are reaching from 500Hz to 5Hz and slower tunneling rates are
not detectable.

If the two sites are not equally deep, the energies of the states ΨL and ΨR are not
equal anymore. This can be regarded as a detuning ∆ to the transition. It diminishes
the oscillation amplitude and increases the oscillation frequency. We describe the
oscillation in the two-level system according to

PR(t) = 〈Ψ(t)|ΨR〉 = Ω2

Ω2 + ∆2 sin2
(√

Ω2 + ∆2 t

2

)
, (2.17)

The maximization of the oscillation amplitude can be used to set the two wells to
equal depth in the experiment as we will show in section 5.3.2.
Without any interaction in the system, two fermions with different spins will

tunnel back and forth in the double-well potential independently. By tuning the
scattering length a to finite values the inter-particle interaction strength U can be
tuned between attraction and repulsion. This will lead either to correlated pair
tunneling or to anti-correlation like in a Mott insulator, respectively.

2.3.1 Observation of the superexchange
With the two tunable Hubbard parameters t and U we are able to investigate Fermi-
Hubbard physics in a double-well potential. We intend to observe superexchange
oscillations as already demonstrated in [Tro08, Gre13]. For its observation the
superexchange parameter J = −4t2/U has to be at accessible time scales in our
system, i. e larger than ≈ 10Hz.
To investigate the superexchange mechanism we have to prepare a system in the

limit of tight binding, where the Fermi-Hubbard model is valid. This means that the
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Chapter 2 Cold fermions as quantum simulators of the Fermi-Hubbard model

lattice is deep enough such that in the lowest energy band the atoms are located
on the lattice sites and can only tunnel to adjacent sites. In optical lattices the
tight-binding limit is described by the parameter V0/ER where V0 is the lattice depth
and ER is the recoil energy. The recoil energy in a lattice of counter-propagating
beams is

ER = h2

2mλ2 (2.18)

where λ is the wavelength of the trap light used for the standing-wave lattice, m is
the atom mass and h is Planck’s constant. If V0/ER > 5 the tight-binding limit is
fulfilled [Sch10].
To estimate the effective lattice depth in our double-well potential we use the

distance of the two minima to calculate ER. The lattice depth V0 is then the energy
of the barrier height between the two sites. The tight-binding limit gives constrains
on the tunneling rate t which depends on the well separation d and the total power
Ptot in the trap. By tuning the two parameters appropriately we can almost in any
case fulfill the tight-binding requirement.
By tuning the repulsive inter-particle interaction, we want to access the Mott-

insulator regime, where hopping of atoms between the adjacent sites is suppressed
and only the virtual hopping of the superexchange takes place. This regime is entered
for U/t = 5.8 z [Jak98] where z is the number of neighboring sites in the lattice. To
investigate the phase diagram we intend to measure the superexchange at different
U/t in the Mott-insulator regime.
For maximizing the superexchange parameter, we can in principle choose a high

tunneling rate and increase the interaction such that, U/t stays constant. So, the
maximum frequency of the superexchange oscillation is only proportional to the
interaction U . However, as we want to stay in the limit of weak interaction, U
has to be a lot smaller than the energy level spacing h̄ω in the trapping potential.
This sets a constraint on the potential depth. Suppose trap frequencies of about
10 kHz and an interaction energy of at most 20% of the trap frequency. Then the
observable superexchange oscillation deep in the Mott-insulator regime (U/t = 20)
has a frequency of J = 4U

(U/t)2 ≈ 20Hz. Around the phase transition U/t = 6
the superexchange constant amounts to J ≈ 220Hz. This estimation shows the
accessibility of the relevant timescales in our experimental setup.

We expect the Hubbard parameters t and U in the three-dimensional double well
to differ from the 1D-calculations. However, they should be on the same order
of magnitude and provide the same tunability range, such that we can access the
interesting regimes with our experimental setup. After the investigation of the double
well a next step will be the extension to more wells where anti-ferromagnetism with
long-range order should be present.
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Chapter 3

Our system for high-fidelity
preparation of small atom
numbers

In the previous chapter we explained that a system with low entropy per particle
is required to observe anti-ferromagnetic ordering of fermions. Up to now such low
entropies cannot be achieved in lattice experiments. In our setup we follow the
approach of loading fermions at quantum degeneracy into one single potential well
and subsequently spilling it to the desired atom number with a high fidelity. Thus
we achieve a few-particle system in its ground state with a high probability. This is
equivalent to a low entropy per particle in the system.
Our technique of high-fidelity preparation will be presented in the following

chapter. In our apparatus we cool a large sample of fermionic lithium down to
quantum degeneracy by using the common cooling techniques, presented in section
3.1. Then we superimpose a small and tight dimple into which a part of the atoms
thermalizes. If the atom number in the deep dimple trap is small compared to the
reservoir, the overall temperature is unaffected by the small trap. Then the lowest
energy levels in the system are occupied with a probability of almost unity. The
required experimental tools for the dimple trap and the spilling technique to prepare
the desired number of atoms will be presented in section 3.2.

3.1 Preparation of a degenerate Fermi gas

Dilute gases of alkali metals were the first candidates to be used for ultracold gas
experiments. Apart from potassium, lithium is the only alkali metal having a stable
and naturally abundant fermionic isotope. Its simple optical transition scheme and
its tunable scattering properties allow us to cool the gas down to quantum degeneracy
by first using radiation pressure and then evaporative cooling. These two steps will
be explained in the following sections.
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Chapter 3 Our system for high-fidelity preparation of small atom numbers

Figure 3.1: The vacuum chamber. The oven (No. 3) in combination with a drift
tube forms an atomic beam going through the Zeeman slower (No. 4) to the
main chamber (No. 5) where the atoms are captured and cooled to quantum
degeneracy. The magnetic field coils for the Zeeman slower, MOT and Feshbach
fields are marked in red. The first gate valves (No. 6) can be used to seal off the
oven chamber. Furthermore, an oven shutter has been implemented between
the oven and the gate valve for interrupting the atomic beam. Taken from
[Ser07]

3.1.1 Laser cooling and trapping the atoms

By heating up solid lithium in a small oven to a temperature of 350 ◦C, we produce
an atomic gas with a high vapor pressure. The lithium atoms enter the experimental
chamber as an atomic beam which has been formed by a drift tube. A low vacuum
pressure in this chamber is crucial to obtain sufficiently long lifetimes of the atomic
samples for measurements to be performed. The low pressure is provided by two
ion pumps with titanium sublimators as depicted in figure 3.1. In addition, the
experimental chamber is coated with a non-evaporable getter coating (NEG). The
drift tube between the oven and the chamber furthermore serves as a differential
pumping stage and a movable oven shutter can block the atomic beam during the
experimental sequence.
The atoms in the beam are first decelerated by radiation pressure: They absorb

photons from a resonant laser beam that oppose their direction of motion and reemit
them in random direction. The resulting net momentum slows the atoms down. To
effectively decelerate the atoms down to an average velocity of a few m/s the laser
beam has to be resonant to the optical transition over the entire distance. However,
the optical transition is slightly shifted depending on the velocity of the atoms. To
compensate for this we use the Zeeman slower coils, as depicted in figure 3.1, that
provide a spatially varying magnetic field along the trajectory of the atoms.
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Figure 3.2: Top view of the experimental chamber including the different laser
beam paths. The near-resonant MOT and Zeeman slower beams are colored
in red, beams for absorption imaging are in blue. The AVT Guppy F038B
NIR CCD camera (Guppy) allows for fluorescence and absorption imaging
perpendicular to the Zeeman slower axis. The AVT Stingray F033B CCD
camera (Stingray) is only used for absorption imaging due to the stray light
from the MOT beam. The far-red detuned dipole trap beam is marked in
green. The X-Y-AOMs are used for power regulation. Above the chamber the
breadboard with the mounted objective is illustrated (yellow). The third MOT
beam has to traverse the objective before it is retro-reflected into the chamber.
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Figure 3.3: Electronic level scheme of 6Li. (a) Laser cooling is performed on
the D2-line. The cooler (repumper) light excites atoms from the F = 3/2
(F = 1/2) levels up to the P3/2-level. Taken from [Geh03] and modified. (b)
In non-zero magnetic field the hyperfine sublevels tune according to mF in
the low-field limit. In high-field they regroup with mS as the coupling to the
external magnetic field exceeds the internal coupling between the nuclear and
the electronic spin. The states are denoted as |1〉 to |6〉 with rising energy.

The decelerated atoms enter the main chamber that provides high optical access.
It is formed by a spherical octagon (MCF600-S0200800-A, Kimball Physics) with
six CF40 viewports and two reentrant CF150 viewports on the top and the bottom.
The small viewports provide an optical access of NA ≈ 0.15 whereas the reentrant
viewports have a NA > 0.6 offering the possibility to implement a high-resolution
objective.

After the deceleration in the Zeeman slower the atoms are captured and cooled in
the magneto-optical trap (MOT). It consists of a magnetic quadrupole field created
by a coil pair in anti-Helmholtz configuration and three slightly red-detuned retro-
reflected laser beams. They cool the atoms and push them towards the center of
the quadrupole field due to a spatially dependent light force. With this technique
the reachable temperature of the atom sample is limited by the width of the driven
optical transition. A detailed explanation to the basic principles of laser cooling
is given in [Met99, Met03]. A top view of the setup including the laser beams of
the magneto-optical trap is depicted in figure 3.2 and detailed descriptions of our
experimental realization of the Zeeman slower and the MOT can be found in [Ser07].
Laser cooling of 6Li is usually performed on the optical dipole transitions from

22S1/2 to 22P3/2 at 671 nm named the D2-line. The single valence electron makes
the electronic structure relatively simple and only few different laser frequencies are
required as illustrated in the level scheme in figure 3.3 a. In low magnetic fields the
electronic spin (S = 1/2), the angular momentum (L) and the nuclear spin (I = 1)
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3.1 Preparation of a degenerate Fermi gas

couple to the hyperfine spin F . This results in a set of non-degenerate hyperfine
states.1 For laser cooling we choose the transition from S1/2, F = 3

2 to P3/2, F ′ = 5
2 ,

but as the splitting of the hyperfine states in the P3/2-state is smaller than the
natural linewidth Γ, the relaxation down to the S1/2, F = 1/2 is significant. To avoid
loosing atoms through this decay a second optical frequency serving as a repumper
on the transition from F = 1

2 to F ′ = 3
2 with almost the same power as the cooling

beam is used to close the cooling cycle. To cool and trap the atoms with the Zeeman
slower and MOT, all laser beams contain these two frequencies. The optimal loading
rate and atom number of the MOT are achieved for a red-detuning of cooler and
repumper light of about 6Γ at a magnetic field gradient of 20G/cm provided by
the MOT coils. To end up in a spin mixture of only |1〉 and |2〉 we switch off the
repumper light slightly earlier and pump all the atoms into F = 1/2. After a loading
time of 1 s we detect about 2× 108 trapped atoms in the MOT at a temperature of
200 µK.

For the characterization of the trapped atomic cloud we can make use of two
differents methods to image the sample. We can collect the fluorescence light of
the atoms that are captured in the magneto-optical trap. With this technique we
can determine the number of atoms in the MOT. However the position and the
temperature of the sample is given by the MOT itself. To obtain information about
the temperature and position of colder atomic samples in the dipole trap (cf. section
3.1.2) we have to use absorption imaging. For this we shine a low-intensity beam
of resonant light onto the atomic cloud. The absorption of the atoms results in a
shadow picture that is imaged on a CCD camera (for details see [Ott10, Lom11]).
From the obtained density profiles we can infer the position, the atom number and
the temperature of the sample. For large samples this technique is suitable, but
counting small atom numbers gets difficult due to the decreasing the signal-to-noise
ratio. Thus, for counting small atom numbers in our system, we will use fluorescence
imaging as described in section 3.2.3. In figure 3.2 the different imaging paths
available in our experimental setup are shown. They allow for an exact determination
of the cloud position in the chamber.

3.1.2 The dipole trap
Although the temperature of the sample in the magneto-optical trap is already
reduced by six orders of magnitude, the phase space density is far away from reaching
unity where quantum degeneracy is reached. For further cooling we transfer the
atoms into a conservative potential. There, evaporative cooling can be performed
which means releasing the hottest particles in the sample, e. g., by lowering the
potential and subsequently rethermalizing the remaining atoms. Thus the average
temperature of the sample is reduced.

1Note that the degeneracy of the sublevels mF is lifted in non-zero magnetic field by the Zeeman
effect. For the lowest two hyperfine states the coupling between I and S is weaker than the
coupling to the external field above B = 50G and the sublevels group with mS , see figure 3.3 b.
In the following the states are named |1〉 to |6〉 with rising energy shift.
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There are two ways to create a conservative potential. One is via a magnetic field
that traps atoms at its minimum2. Consequently only low-field seeking atoms can
be confined in such traps and unfortunately these states have high loss rates due to
dipolar relaxation processes. In addition, the experimental investigation in a purely
magnetic trap is difficult as the interaction between the atoms usually adjusted via
the magnetic offset field strength can not be varied at will. One can circumvent this
by transferring the atoms into an optical trapping potential created by a focused
laser beam.

To generate an optical force acting on atoms, it is not necessary to drive a resonant
transition. Imposing an oscillatory electric field E(r, t) on the atoms induces a dipole
moment p. The interaction between this field and the dipole moment is described by
the potential Vdipole = −1

2〈Ep〉. If the electric field frequency is below the resonance,
E and p are oscillating in phase and the potential becomes attractive. For frequencies
above the resonance the potential becomes repulsive. The exact dipole potential is

Vdipole(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+ Γ
ω0 + ω

)
I(r) (3.1)

where ω0/2π is the resonant transition frequency and ω/2π denotes the frequency
of the trapping light. Γ is the transition linewidth, c the speed of light and I(r) is
the intensity distribution that determines the shape of the potential. In the limit
of small detuning, the optical potential depth grows with decreasing ω0 − ω, but
we also observe photon scattering due to the trapping light which causes atom loss.
Since the photon scattering rate Γsc is proportional to (ω0 − ω)−2 it is favorable to
detune the trapping light far to the red (or blue) to reduce photon scattering. A
detailed description of optical traps can be found in [Gri00].

For the sake of simplicity we decided to transfer the atoms directly from the MOT
to the optical dipole trap. The temperature in the MOT is limited to at least 200 µK.
The transfer is only efficient if the conservative trapping potential is significantly
deeper than the kinetic energy of the atoms due to the temperature. Also, the
spatial overlap with the MOT has to be sufficiently large. Therefore we compress the
initially large and warm MOT by ramping up the magnetic field gradient, reducing
the detuning to 3Γ and decreasing the power in the MOT beams. Nevertheless a
beam power of about 200W at far red-detuned 1070 nm is required to create a trap
that is deep enough. The trap light is delivered by a Ytterbium doped-fiber laser
(YLR-200-LP) from IPG Photonics. The optical trap is formed by a crossed-beam
configuration with an intersection angle of 14◦ and a beam waist of 40 µm resulting
in an aspect ratio of about 1:10 (see figure 3.2).
For the later evaporation we control the beam power with two acousto-optic

modulators (AOM). The deflected power going into the main chamber is then varied
in power via the amplitude of the radio frequency for the AOMs. For feed-back small
fractions of the dipole trap beam are detected on two photodiodes with different

2 Remember Maxwell’s law: the creation of a static magnetic field with a maximum is not possible.
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Figure 3.4: Scattering off a box potential. For zero potential depth the radial
part of the wavefunction u(r) is depicted in blue. For non-zero depth the
wavefunction acquires a phase shift of δ. The associated scattering length a is
the intercept between the dashed line and the abcissa. If a bound state in the
potential gets close to the edge of the potential, the scattering length diverges.
Taken from [Lom11] and adapted.

gain. With the two photodiodes we can stabilize the trap power over a large range
down to very small trap powers.

All in all we transfer about 1% of the atoms into the dipole trap in a spin mixture
of |1〉 and |2〉. By subsequently lowering the trap depth we evaporatively cool our
sample.

3.1.3 Scattering properties of 6Li
Effective thermalization of the sample is a indispensable prerequisite to make the
evaporative cooling technique work. It requires well suited scattering properties
of the atoms. In dilute gases inter-particle interaction is governed by two-body
scattering as the average free path length exceeds by far the finite potential range.
An elastic two-body collision can be described by going to the center-of-mass

frame of the two particles. Then, the stationary Schrödinger equation for a particle
scattering off a spherically symmetric interaction potential can be solved. Due to
the low temperatures of our samples the particles’ de Broglie wavelength is on the
order of 1 µm while the interaction potential is much smaller. Thus the incoming
plane wave does not probe the details of the interaction potential but only acquires
a relative phase shift as depicted in figure 3.4. In addition, the low collision energy
of the scattering partners enables only s-wave scattering as the centrifugal barrier
for higher angular momenta cannot be overcome. The universal nature of such a
two-body scattering process results in a single parameter that describes the entire
collision, the s-wave scattering length a.

The exact value of a is determined by the phase shift which the incoming wave gets
due to the interaction potential V (r). This phase shift δ is mainly influenced by the
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FIG. 1 Basic two-channel model for a Feshbach resonance.
The phenomenon occurs when two atoms colliding at energy
E in the entrance channel resonantly couple to a molecular
bound state with energy Ec supported by the closed channel
potential. In the ultracold domain, collisions take place near
zero-energy, E → 0. Resonant coupling is then conveniently
realized by magnetically tuning Ec near 0, if the magnetic
moments of the closed and open channel differ.

achieved by optical methods, leading to optical Feshbach
resonances with many conceptual similarities to the mag-
netically tuned case; see Sec. VI.A. Such resonances
are promising for cases where magnetically tunable reso-
nances are absent.

A magnetically tuned Feshbach resonance can be
described by a simple expression2, introduced by
(Moerdijk et al., 1995), for the s-wave scattering length
a as a function of the magnetic field B,

a(B) = abg

(
1 − ∆

B −B0

)
. (1)

Figure 2(a) illustrates this resonance expression. The
background scattering length abg, which is the scatter-
ing length associated with Vbg(R), represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg(R). The parameter
B0 denotes the resonance position, where the scattering
length diverges (a → ±∞), and the parameter ∆ is the
resonance width. Note that both abg and ∆ can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach res-
onance; it occurs at a magnetic field B = B0 + ∆. Note
also that we will use G as the magnetic field unit in this
Review, because of its near-universal usage among groups
working in this field; 1 G = 10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2(b), relative

2 This simple expression applies to resonances without inelastic
two-body channels. Some Feshbach resonances, especially the
optical ones, feature two-body decay. A more general discussion
including inelastic decay is given in Sec. II.A.3
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FIG. 2 Scattering length a (Panel (a)) and molecular state en-
ergy E (Panel (b)) near a magnetically tuned Feshbach reso-
nance. The binding energy is defined to be positive, Eb = −E.
The inset shows the universal regime near the point of reso-
nance where a is very large and positive.

to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E = 0 on the
side of the resonance where a is large and positive. Away
from resonance, the energy varies linearly with B with a
slope given by δµ, the difference in magnetic moments of
the open and closed channels. Near resonance the cou-
pling between the two channels mixes in entrance-channel
contributions and strongly bends the molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb =
h̄2

2µa2
, (2)

where µ is the reduced mass of the atom pair. In this limit
Eb depends quadratically on the magnetic detuning B −
B0 and results in the bend seen in the inset to Fig. 2. This
region is of particular interest because of its universal
properties; here the state can be described in terms of
a single effective molecular potential having scattering
length a. In this case, the wavefunction for the relative
atomic motion is a quantum halo state which extends to
a very large size on the order of a; the molecule is then
called a halo dimer; see Sec. V.B.2.

A very useful distinction can be made between reso-
nances that exist in various systems; see Sec. II.B.2. For
narrow resonances with a width ∆ typically well below
1 G (see Appendix) the universal range persist only for
a very small fraction of the width. In contrast, broad
resonances with a width typically much larger than 1 G
tend to have a large universal range extending over a

Figure 3.5: A two-channel scheme of a Feshbach resonance. The open channel is
energetically accessible for the scattering process but the resulting background
scattering length cannot be tuned. By tuning the energy of the closed channel
a bound state energy Ec can be tuned to resonance with the continuum. Due
to virtual coupling to this bound state the scattering length can be tuned and
diverges for Ec → 0. Taken from [Chi10].

energy difference between the highest bound states in the potential and the relative
kinetic energy. δ is small if the highest bound state in the potential is energetically
far away from the scattering energy, but as soon as this energy difference gets small,
δ approaches π/2 and the scattering length diverges. In principle a can take any
negative or positive values depending on the energy difference and therefore on the
depth of the interaction potential.
Although the interaction between the scattering particles is due to an attractive

potential, the phase shift can take values that make the effective interaction repulsive
or attractive. In the scattering process the phase shift results in a change in relative
momentum of the particles to positive or negative values. The resulting interaction
energy of two scattering particles depending on the scattering length a amounts to

Vint = 4πh̄2a

m
. (3.2)

For negative scattering lengths this interaction is attractive whereas it is repulsive
for positive scattering length. Thus the ability to change a not only results in a
possibility to tune the interaction but also to choose between attraction and repulsion.
As the energy levels of bound states in the collision potential cannot be tuned

with respect to its continuum the background scattering length abg is fixed. For
nevertheless tuning the scattering length, we make use of the fact that there is more
than one possible scattering potential. Scattering processes that are energetically
accessible are called open channels, illustrated in figure 3.5. Entering the open
channel, it is possible to couple virtually to an energetically forbidden (closed)
channel. This coupling gets strong if the energy difference between the continuum
and a bound state in the closed channel is vanishing. The relative energies between
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Figure 3.6: Feshbach resonances of 6Li spin mixtures in the lowest three hyperfine
states |1〉, |2〉 and |3〉. The broad Feshbach resonance is located at 832G [Zü13].
At a magnetic field of B ≈ 523G the |1〉-|2〉 mixture is non-interacting. Taken
from [Zü12a].

the collision channels depend on the internal quantum numbers of the scattering
partners, e. g. the spin alignment. By applying a magnetic field B the difference
in magnetic moment ∆µ between the two channels results in a change in relative
energy difference ∆µB = ∆E. It allows the variation of the scattering length as a
function of the magnetic offset field [Chi10]

a(B) = abg − abg
∆B

B −B0
(3.3)

where B0 is the magnetic field offset of the resonance position. ∆B is the width of
the resonance and depends on the coupling and the difference in magnetic moment.

The scattering process of two particles depends also on the quantum statistics of
the collision partners. In the collision process of two identical fermions the total
wavefunction has to be anti-symmetric. For vanishing angular momentum the two
possible final configurations of the two-body collision interfere destructively and
the resulting scattering cross-section is zero. Thus identical fermions cannot collide
via s-wave scattering. A detailed calculation can be found in [Dal99]. To obtain
a finite scattering cross-section for s-wave scattering of fermions, they have to be
distinguishable.

In the following we will only consider the scattering between the hyperfine states
|1〉 and |2〉 of 6Li which can collide in a singlet or a triplet configuration. For low
magnetic offset field, both channels are energetically allowed and collisions occur
in a superposition of both configurations. The background scattering lengths of
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Chapter 3 Our system for high-fidelity preparation of small atom numbers

|1〉 - |2〉 mixture is abg,s = 39a0 for the singlet and abg,t = −2240a0 for the triplet
configuration, where a0 is the Bohr radius. In the high magnetic field range, the
spins get aligned by the external magnetic field and only the triplet configuration is
energetically accessible. The channels can be coupled and the scattering length can
be tuned by the magnetic offset field. At 832G [Sal13] this mixture shows a broad
Feshbach resonance where the scattering length diverges, see figure 3.6. But also at
higher fields of up to B = 1400G the absolute value of the scattering length remains
large due to the large background scattering length of the triplet state. Below the
resonance a has a minimum at B = 300G and at a field of around B = 523G the
sample is non-interacting. The mixtures of |2〉 - |3〉 and |1〉 - |3〉 show similar curves
of the scattering length over the magnetic field.

3.1.4 The magnetic offset field
The magnetic offset field for the adjustment of the scattering length is provided by
two coils approximately in Helmholtz configuration. They consist of fifteen windings
of a 5mm × 1mm copper wire and are glued onto water-cooled heat sinks with
diamond-filled epoxy. Since they are mounted in the outer rims of the reentrant
viewports, they do not decrease the optical access and are nevertheless as close as
possible to the atomic sample. The current for the coils is provided by a SM15-400
(Delta Elektronika) power supply and stabilized by a current transducer and a digital
feedback loop [Koh08].
The Helmholtz configuration provides a magnetic field with a maximum in the

radial plane. Thus, it acts as a confining field on the high-field seeking hyperfine
states. Since the distance of the coils is slightly larger than required for Helmholtz
configuration, the field is anti-confining around the center position in axial direction
with almost the same absolute value of curvature. For a detailed description of the
magnetic field, see [Ser07, Zü09, Lom11].

With currents up to I = 400A the coil pair can produce magnetic offset fields from
0G to 1400G with a sufficiently high stability. By switching the current direction
in one of the coils we can also produce a gradient field. We use this to increase the
magnetic field gradient in the MOT compression phase, see section 3.1.2.
For the installation of the new and large high-resolution objective the Feshbach

coils had to be replaced. In the course of this a new feedback loop scheme was
implemented which was later used for the measurements with the new objective.
Further details concerning the stabilization are described in section 4.4.1.

3.1.5 The evaporation scheme
With the scattering length a being freely tunable via the magnetic field we can
maximize the thermalization rate required for efficient evaporative cooling. Thermal-
ization is fast for a large scattering rate and thus for a high scattering cross-section.
The scattering cross-section grows with a2 and thus we can tune the system to strong
repulsive or attractive interaction for efficient evaporative cooling.
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The scattering length diverges on the Feshbach resonance. For evaporation we go
to a field of 760G. As soon as the temperature of the sample gets down to the order
of the binding energy of dimers the formation of molecules starts. At this field we
can achieve a pure molecular BEC in about 3 s, loosing about a factor of 10 in atom
number. The preparation of a molecular BEC is useful for diagnostics of our setup
but for the preparation of our few-body system it is of no use.

Instead we need a weakly interacting degenerate Fermi gas. In principle one could
dissociate the cold molecules by ramping to higher magnetic field, but above the
Feshbach resonance the interaction is still strong. Only at fields lower than the
Feshbach resonance field the scattering length gets small. However, by a magnetic
field ramp to lower fields the sample ends up in the molecular branch.

To prepare a weakly interacting Fermi gas we have to avoid the molecule formation.
We start evaporative cooling at the resonance until the first molecules start to form
after 1.8 s. Then we jump to B = 300G where the scattering length is negative. Due
to the large absolute value of a thermalization still works but is less efficient. It takes
another 4.5 s until we get about T/TF = 0.5 with 2× 104 atoms per spin state.

In a Fermi gas further evaporation gets more and more inefficient since the lower
temperature the Fermi sphere has already filled up and the number of unoccupied
states is small. Scattering into the unoccupied states at the edge of the Fermi sphere
gets less probable. To reach higher degeneracy in the sample we superimpose a tight
optical dimple trap [SK98]. In the following we exploit this technique and use the
dimple trap to prepare a few-fermion system with high fidelity.

3.2 The microtrap
The superposition of the large dipole trap with a small dimple trap is the crucial
step to increase the degeneracy of our sample. The dimple trap is a far red-detuned
optical trap which creates a dipole potential as presented in section 3.1.2. It is formed
by one single tightly focused Gaussian beam. The intensity distribution determines
the potential form

V (r) ∝ I0

πw2(z) exp
(
−2 ρ2

w2(z)

)
(3.4)

where ρ is the radial and z the axial coordinate. w(z)2 = w2
0(1 + ( z

zR
)2) describes the

waist of the Gaussian beam in axial direction with w0 the focus waist and zR the
Rayleigh length. I0 is the peak intensity of the beam.

With a focus waist in the range of few micrometers and moderate laser powers the
trap frequencies characterizing the potential are much higher than in the dipole trap.
This means that the level spacing in the trap is large. So, only a low number of
atoms fit into the microtrap. Therefore the superposition with the reservoir and the
subsequent thermalization does not influence temperature T of the sample. As the
depth of the dimple trap exceeds the final depth of the large dipole trap the Fermi
energy is completely governed by the dimple trap TF ≈ TF, dimple. After the atoms
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Chapter 3 Our system for high-fidelity preparation of small atom numbers

have thermalized into the dimple trap, the quantum degeneracy of the combined
trap system has increased as T/TF, dimple < T/TF, dipole.

The high quantum degeneracy is equivalent to an occupation probability of almost
unity for the lowest trap levels. We exploit this fact for the deterministic preparation
of few fermions in the lowest levels of the dimple trap [Ser11b]. We tilt the trapping
potential and spill all the atoms from higher lying energy levels ending up with a
distinct number of atoms that remain trapped. The fidelity of this atom number
preparation depends on the level spacing and on the stability of both the tilt and the
trap depth. The smaller the trap focus is the better we can prepare our sample and
the less stability is required. So our goal is to set up a dimple trap, in the following
called microtrap with a small waist and a stabilized depth. The first generation of
the microtrap and the spilling technique is described in section 3.2.2. For increasing
our preparation fidelity we developed a high-resolution objective to create an even
smaller focus. Its preparation performance has been investigated in the course of
this thesis and is presented in section 5.1.

3.2.1 The first generation microtrap setup

The first generation microtrap is created by a two-lens objective with a numerical
aperture of NA= 0.36. It focuses a collimated 1064 nm beam through the vacuum
window of the upper reentrant viewport into the main chamber, see figure 3.7. In a
distance of 40.7mm behind the objective the focus is superimposed with the dipole
trap. For an intensity of 240 µW the measured trap frequencies of the microtrap are
ωr, ωa = 2π × (13.2± 1.1, 1.4± 0.1) kHz. This results in a waist of w0 = 1.8 µm and
an astigmatism of a 10% between the two tight trap axes. The aspect ratio amounts
to about 10.
For deterministic preparation the depth of the microtrap must be very stable.

Intensity noise on the laser light in the range of the trap frequencies would heat the
atoms into higher levels. The infrared trapping light is provided by a Mephisto-S 500
NE (INNOLIGHT) which has a low intensity noise level (measured RIN<−120 dB/Hz
for f<300 kHz [Nei13]). Furthermore, the laser power for the microtrap is stabilized
by reflecting half of the beam power in front of the microtrap objective onto a
photodiode. With this signal we stabilize the microtrap by regulating the input
power with an acousto-optic modulator. The exact scheme is shown in figure 3.8.

For loading the microtrap we start with a mixture of atoms in states |1〉 and |2〉 in
the dipole trap. After evaporation (cf. section 3.1.5) we end up with 2× 104 atoms
per spin state at a temperature of about 250 nK. This corresponds to T/TF = 0.5.
Within 100ms we adiabatically ramp on the microtrap and let the sample thermalize
for 20ms at a magnetic offset field of B = 300G . For detailed description of the
adiabatic ramp see [Ser11a, Zü12a]. With a trap light power of P = 240 µW the
quantum degeneracy in the microtrap amounts to T/TF = 0.08. Subsequently the
reservoir is removed and about 600 atoms remain in the microtrap. We ramp the
magnetic offset field to B = 523G where the particles are non-interacting.
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CCD Camera

Gradient coils

MOT Beams 

Trapping beam

Offset coils

 Objective

Figure 3.7: A detailed view of the experimental configuration for the microtrap
creation and atom detection. The trapping beam is shone through the top
vacuum window of the reentrant viewport onto the atom sample. The gradient
coils are used for the spilling, the offset coils set the interaction strength between
the atoms. The atom number detection is done by loading the atoms back into
a MOT and capturing their fluorescence light with a CCD camera. Taken from
[Ser11a].

Figure 3.8: The microtrap setup. The power stabilization and creation scheme
of the trapping beam are illustrated. The power is stabilized by passing the
beam through an AOM. On the focusing setup the polarization of the incoming
beam is cleaned and half of the power is reflected by a 50/50 beamsplitter for
the power detection on a photodiode. The beam is collimated with a lens of
f = 190mm and then focused through the objective onto the atoms. Taken
from [Ser11a].
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Figure 3.9: The spilling technique. A two-spin state quantum-degenerate gas
of fermions is loaded into the microtrap (A). By applying a magnetic field
gradient and fine-tuning of the potential depth (B) one can selectively prepare
a few-fermion system in its ground state (C). Taken from [Ser11a].

3.2.2 Deterministic preparation of few fermions
The remaining 300 atoms per spin state fill up the microtrap according to the Pauli
principle. To spill the trap down to a certain energy level, we deform the trapping
potential such that the higher levels become unbound, as depicted in figure 3.9. We
do this by applying a magnetic field gradient of B′ = 18.92G/cm with the MOT
coils3 along the weakly confining axial direction of the microtrap. This gradient
couples to the atoms via their magnetic moment. At high magnetic offset field the
magnetic moments of the two spin states are approximately equal and the potential
deformation is almost the same from both hyperfine states4.

With the applied magnetic field gradient about 20 atoms remain in the trap. For
precise selection of a distinct number of atoms we additionally decrease the potential
depth. For this we lower the laser power within 8ms to a height where all the energy
levels down to the desired one become unbound and the atoms escape or tunnel out of
the potential. The tunneling times of the atoms in the bound levels below are much
larger so that they stay in the trap. After a hold time of 25ms the potential depth
is ramped up to the initial value in another 8ms. For atom number detection we
transfer the atoms into a small magneto-optical trap (MicroMOT) which is described
in section 3.2.3.
By applying a magnetic field gradient and fine tuning the potential depth we

are able to prepare up to 10 atoms in the ground state with a fidelity about 90%
[Ser11b]. Figure 3.10 a shows the number of atoms we prepare over the potential
depth normalized to the initial depth. With our stabilization setup we can tune
the optical power in the trap precisely enough to distinguish the doubly occupied
trap levels. By appropriate choice of the potential depth, we can prepare a distinct
even atom number. The two-atom steps also indicate that excitations in the radial
direction of the trap are frozen out and we have a quasi one-dimensional trap of axial
excitation levels. In the limit of one dimension the steps have also been simulated
indicated by the red solid line in figure 3.10 a. Detailed descriptions of the simulation

3The applied gradient is rather small. After the inset of the new Feshbach coils and the change of
the stabilization scheme, described in section 4.4.1 we are able to apply higher gradients.

4For the exact characteristics, see figure 3.3. At B ≈ 23G the magnetic moment of |2〉 is zero and
the magnetic field gradient only couples to |1〉. There, we can prepare imbalanced samples.
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Figure 3.10: Deterministic control over occupied quantum states. Figure (a)
shows the detected atom number as a function of the optical trap depth in the
spilling process. Clear two-atom steps are visible indicating a deterministic
preparation of filling number. (b) Preparation fidelity of two atoms in the
lowest energy state. For estimating the possible excitation due to heating by
the spilling process itself, the fidelity after a second spill is shown in figure (c).
Taken from [Ser11a].

can be found in [Ser11a].
Two atoms can be prepared in the lowest trap level with 96% fidelity (cf. figure

3.10 b). In 2% of the cases 1 or 3 atoms remain in the trap, respectively. To make
sure that we did not heat up the system during preparation we spill the trap a second
time. This still yields a fidelity of 92% for the 2-atom system, as shown in figure
3.10 c. From this we conclude that we prepare the system in the ground state with
high fidelity and heating is small.

3.2.3 Atom number detection
To detect numbers of atoms on the order of one we transfer the sample back into the
magneto-optical trap and use fluorescence imaging. For reliable atom counting the
recapture into the MOT has to be efficient and the measurement of the fluorescence
photons has to be optimized concerning the signal-to-noise ratio.

To raise the signal of the fluorescence imaging of a MOT, the number of detectable
photons can be increased by a large exposure time on the camera and a reduced
red-detuning to the optical transition. The noise can be suppressed by minimizing
the area on the camera, where fluorescence light is detected by compressing the MOT
via a stronger magnetic field gradient (B′ = 250G/cm in our case). Furthermore, a
reduction of the stray light during the detection can be achieved by decreasing the
size and power of the MOT beams.

Limited by the imaging optics, we can collect only 0.8% of the emitted fluorescence
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Figure 3.11: Influence of the interaction energy on the level position. Figure
(a) illustrates the energy level shift due to inter-particle interaction U of a
two-particle system in the ground state. The effective tunneling barrier can be
deduced by the measurement of the tunneling time. Figure (b) shows such a
measurement of the tunneling time over the mean atom number. Precise knowl-
edge of the potential shape and a WKB calculation enable the measurement of
the interaction strength U . Taken from [Ser11a].

photons on a CCD camera (AVT Guppy F038B NIR), see figure 3.7. After an
exposure time of 0.5 s we integrate the fluorescence signal of the MOT. For counting
the atom number the detected fluorescence signals are binned into a histogram.
It shows clearly distinguishable peaks that we identify as discrete atom numbers
separated by 6σ assuming gaussian distributions. The reliability of the atom number
detection can in principle be limited by the lifetime of the atoms in the MOT. In our
setup, however it exceeds 250 s and is thus significantly larger than our detection
time.

The recapture of the sample into the MOT is affected by the spatial overlap with
the microtrap and the force that pulls the atoms into the MOT. For the transfer
we ramp up the magnetic field gradient to B′ = 250G/cm as fast as possible. The
capture efficiency is hard to determine quantitatively. However, we estimate a lower
limit of 98(1)% considering the high measured preparation fidelity of few atoms.

3.2.4 Energy- and spin-dependent detection methods
With the fluorescence imaging in the MicroMOT we are able to detect the number
of atom number that we prepared in our microtrap. However, we cannot distinguish
their spin states and the atom detection does not reveal any information about the
energy levels the atoms have occupied. We have to conclude all these information by
trap spilling and subsequent atom counting.
The determination of the energy of the trap levels in our system is the first tool

we developed. The common energy level of two fermions with different spin is shifted
by the interaction energy U between them, as depicted in figure 3.11 a. For precisely
measuring this shift, we can use the fact that the atoms can also tunnel through

30



3.2 The microtrap

the potential well within a certain time if their energy is very close to the barrier
height. The tunneling time is thus a direct measure of the energy difference to the
barrier height. We prepare a sample with few atoms, turn on the interaction and set
a certain barrier height. The tunneling rate is then measured by holding this tilted
potential for a certain time, then ramping the barrier up again and counting the
remaining atoms. We plot the mean atom number of the different hold times. As
depicted in figure 3.11 b, the mean number of atoms remaining in the trap decreases
faster for stronger repulsive interaction. The level was shifted upwards due to the
interaction. By comparing the tunneling times of a non-interacting system with an
interacting system, one can deduce the exact energy shift, if the potential shape is
known [Ser11a]. With the tunneling measurement and subsequent WKB calculations,
we could observe fermionization of two distinguishable fermions [Zü12b].

Another issue is the determination of the spin state in the system in spite of
spin-insensitive atom number counting. Suppose we have one atom of either state |1〉
or |2〉 in the trap. If we can selectively spill one atom species, subsequent counting of
the remaining atoms directly tells us, in which state the atom was. As the magnetic
field gradient couples to the magnetic moment of the atoms the selective spilling
of state |1〉 can be performed at the magnetic offset field of B ≈ 23G. There, the
magnetic moment of state |2〉 is zero and thus the potential is not deformed for
atoms in this hyperfine state during the spilling process.
Recently we used this method to prepare an imbalanced few-particle Fermi gas

with only one minority atom and several majority atoms. We then could determine
the inter-particle interaction strength as a function of the scattering length and the
majority particle number. Here, the interaction energy was measured by its shift of
the rf transition frequency between the two hyperfine states [Wen13].
These tools of measuring the energy in the system and the spin-selective spilling

demonstrate the detection possibilities in our system although we can only count
atoms. Together with the deterministic preparation of the atom samples in the
ground state we have thus a highly controllable system at hand to investigate few-
body phenomena in quantum mechanics. The low entropy per particle in the system
also provides a way to explore unconventional phases of condensed matter physics
like the Néel phase.
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Chapter 4

A new microtrap setup

The objective of the microtrap setup described in the previous chapter was supposed
to be a temporary solution until the high-resolution objective designed in [Ser11a]
had been assembled. In spite of the relatively large focus size of 2 µm we were able
to demonstrate high preparation fidelity with this objective [Ser11b] and to study
the physics of few-fermion interactions in quasi-1D systems [Zü12a]. Replacing it
with a high-resolution objective provides us with a much smaller focus with fewer
abberations which gives us better control over the preparation procedure. However,
our goal was not only to improve the quality of our optical trap, but also to increase
its flexibility. An acousto-optic deflector (AOD) enables us to manipulate the shape
of our focus and allows the creation of multiple independently controllable wells,
as depicted in figure 4.1. With these capabilities we will be able to investigate,
e. g., Fermi-Hubbard physics with tunable tunneling parameters on experimentally
accessible time scales.

RF1
(f1,A1)

AOD

Objective

Vacuum viewport

RF2
(f2,A2)

I1(A1) I2(A2)

x1(f1)
x2(f2)

Figure 4.1: Working principle of the new setup. An acousto-optic deflector
(AOD) provides several trap beams which are controlled via radio-frequency
input. After beam expansion by a telescope they are focused by a high-
resolution objective into the vacuum chamber. The objective translates the
angular differences between the beams into a shift of the position of focus. This
creates an array of microtraps whose separations and relative depths can be
tuned by the frequency and amplitude of the rf signals applied to the AOD.
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wavelength λ = 1064 nm λ = 671 nm
focal length 20.3mm 20.3mm
image distance ∞ ∞
diameter field of view 200 µm 200 µm
max. diffraction limited NA 0.6 0.6
entrance aperture diameter at max. NA 24.4mm 24.4mm
resolution 1.08 µm 0.68 µm
waist of focus 0.72 µm 0.45 µm

Table 4.1: The nominal design parameters of the high-resolution objective. Taken
from [Ser11a].

This chapter presents the characterization of the components and the alignment
of the new microtrap setup. The properties of the high-resolution objective and
the optical setup providing the trapping beam are presented in section 4.1 and 4.2
focusing on a quantitative determination of the wavefront error sources. Section
4.3 explains the working principle of the acousto-optic deflector and the creation of
double-well potentials and more complex potentials. In section 4.4 the integration of
the new microtrap setup into the existing experiment is summarized.

4.1 The high-resolution objective
We intend to create microscopic potential structures by using an objective for focusing
the trapping beams. The required numerical aperture entails a sub-micron imaging
resolution. A chromatic correction of the objective for the imaging light allows for
high-resolution imaging.
The required objective with its largest possible NA provides diffraction-limited

performance at 1064 nm and 671 nm including chromatic corrections. Additionally
it needs an effective focal length larger than 20mm as it will be placed outside the
vacuum chamber. Hence, it also has to be corrected for the 6mm vacuum window.
An objective which fulfills all the requirements has been developed in [Ser11a] and
consists of a large asphere for focusing and two achromats for expanding the incoming
beam. The nominal parameters are listed in table 4.1 and the detailed design is
depicted in figure 4.2. The high numerical aperture makes the objective’s performance
sensitive to its exact alignment. Since focus diagnostics are impossible once the
objective has been added to the vacuum chamber a detailed and deterministic
alignment procedure has been devised.

After the design procedure a detailed characterization of the manifactured objective
was necessary in order to estimate the expected performance in the experiment and
recognize potential limitations and sensitivities. The two objectives assembled by
Jenoptik are subsequently denoted as ’BA1001’ and ’BA1002’ and have both been
tested.
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small achromat

large achromat asphere
vacuum window15 mm

iris

Figure 4.2: The high-resolution objective consists of a large asphere lens pro-
viding an NA = 0.6 at a focal length of 20.3mm. The large and the small
achromatic doublet decrease the required incident beam size to a diameter of
24.4mm. The entire objective is corrected for the 6mm thick vacuum window
located 2mm behind the asphere and for the chromatic shift between the two
design wavelengths 1064 nm and 671 nm.

4.1.1 Determination of wavefront errors
The high-resolution objective has been designed to produce a diffraction-limited focus
for the microtrap. Wavefront distortions in the objective can degrade the quality and
the size of the focus. They are measured by the deviation from a spherical reference
wavefront created by a perfectly focusing optical device. However, for very small
wavefront distortions the form of the focus would not be recognizably worse. It can
be shown that the deviation from the intensity distribution of a perfect focus only
becomes visible for errors greater than 0.07λ [Mah82].
We measure the wavefront created by the objective by means of interference.

Therefore, we set up a Michelson interferometer, see figure 4.3. One of the two
paths contains the objective aligned together with a vacuum window and a concave
spherical mirror which is positioned behind the focus. The beam hits the reflective
sphere perpendicularly if its curvature corresponds to the wavefront curvature of
the beam at that position. Thus, assuming that all the other optical elements and
the sphere are perfect the resulting interference picture directly shows the double
wavefront errors of the objective. This measurement has been presented in [Kli12]
and shows that the errors are < λ/4.
However, it is difficult to quantitatively determine the absolute value of the

wavefront error as the measurement does not show the full contrast which corresponds
to λ/4 in optical path difference. For a second measurement we introduced a slight
offset to the position of the sphere in order to get rings on our interference pattern as
shown in figure 4.4. In case of a perfect objective the rings are concentric and circular.
Any deviation from that can be attributed to higher orders of wavefront errors. In our
measurement we observe no deviation from a circular wavefront larger than λ/8 up
to a diameter of 20mm for both objectives. The deviation from concentric fringes is
clearly larger in the objective BA1002 with about λ/4. The results are in agreement
with the mentioned measurements in [Kli12] and shows the high performance level
of the objectives.

35



Chapter 4 A new microtrap setup

dichroic
mirror

Figure 4.3: Optical setup for the wavefront analysis of the objective. The objec-
tive together with a spherical mirror implemented in one path of a Michelson
interferometer. The interference pattern which indicates wavefront errors is
imaged on a beam profiler camera.

19.9mm 19.9mm

Figure 4.4: Measurement of the wavefront errors (left: BA1001, right: BA1002).
The objective is installed in a Michelson interferometer with a spherical mirror
behind the objective’s focus. The position of the sphere is slightly displaced
with respect to the position where the wavefront curvature corresponds to
the sphere curvature which results in circular fringes with a spacing of λ/2.
Deviations from the concentric circles (red) indicate wavefront errors. Both
interferometer patterns show no deviation from the circular form by > λ/8
upto to a diameter of 20mm (solid lines). The circular fringes of the objective
BA1002 deviate by λ/4 from the concentric configuration.
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4.1.2 Measurement of the resolution
The quality of an optical device also becomes evident by its resolution of a point-like
object. In our case this is of interest for a later usage for fluorescence imaging.

The resolution r of an imaging system is defined as the minimum distance between
two point sources that can still be distinguished. Diffraction fundamentally limits the
resolution as the image of the intensity distribution of a point source has the form of
an Airy disc. The size of the pattern depends on the size of the light cone that is
captured by the imaging device. Thus, r is the distance between the maximum and
its adjacent first minimum of the diffraction pattern, corresponding to

r = 1.22 λ

2NA (4.1)

with the numerical prefactor coming from the two-dimensional geometry of the Airy
disc, λ the wavelength of the light and the numerical aperture NA.

To determine the resolution of an objective a point source is imaged delivering the
so-called point spread function (PSF). Therefore one has to choose an object that is
much smaller than the nominal resolution. In [Kli12] an 800 nm large pinhole was
used for this measurement but the influence of the finite size of the object on the
measurement was not clear. For more reliable values we used a gold grating [Ott06]
with 650 nm holes in a relative distance of 20 µm that we illuminate from the back
with laser light of 1064 nm and 671 nm1 and set into the focal plane of the objective.
The image is detected on a CCD camera (Thorlabs beam profiler BC106-VIS, pixel
size 6.45 µm) with a lense of f = 750mm (Melles Griot, wave front error < λ/10).
In table 4.2 the measured resolution of both objectives are compared with the

resolution of the objective BA1002 measured with the pinhole. Within the errors
both measurements give approximately the same results. The objective BA1001
shows a slightly better resolution than the objective BA1002 where we observed
abberation in the PSF (cf. figure 4.5). However, the deviations from the nominal
values are significant for both objectives.

Note that a direct examination of the alignment with direct feedback from focus
diagnostics will be impossible when the objective is installed in the experiment. This
requires a passive alignment which has also been applied for all characterization
measurements presented in this section. The vacuum window and the lens planes
in the objective are designed to be parallel. First, the beam is adjusted to be
perpendicular to the vacuum window which provides a plane of reference. Next, the
objective is mounted before the vacuum window and a dichroic mirror is placed upon
the casing of the objective. The plane of this mirror can be adjusted to be parallel
to the reference plane by minimizing the interference fringes.

With the test setup one has the possibility to align the objectives angle ’actively’.
This means that the tilt angle is aligned for obtaining a symmetric PSF on the camera.
In the pinhole configuration we could not see an improvement of the resolution by

1The adjustment for the measurement gets much easier due to the grating and the magnification
can be determined with high accuracy.
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Figure 4.5: Intensity profiles of the PSF in horizontal direction at 671 nm mea-
sured with the gold grating. (a) shows the profile of the passively aligned
objective BA1001. In (b) clear abberation can be detected in the PSF of the
passively aligned objective BA1002. (c) shows the result for an active alignment
of the objective BA1002. Qualitatively it does not differ from (a).

BA1002 pinhole [Kli12] BA1002 grating BA1001 grating
λ 671 nm 1064 nm 671 nm 1064 nm 671 nm 1064 nm
x-prof. 1.08± 0.07 1.48± 0.09 1.51± 0.10 1.61± 0.10 1.12± 0.10 1.42± 0.10
y-prof. 1.05± 0.04 1.59± 0.11 1.21± 0.10 1.51± 0.10 1.12± 0.10 1.33± 0.10
nom. 0.68 1.08

Table 4.2: Measurement of the resolution in µm by imaging the point spread
function of both objectives. The measurement was proceeded with an 800 nm
large pinhole [Kli12] for ’BA1002’ and a gold foil with a grating of 650 nm large
holes for both objectives. For the measurement the objectives were aligned
passively to the vacuum window. Within the errors the measurements give
approximately the same results. The objective BA1001 performed slightly
better.

BA1002 actively aligned
λ 671 nm 1064 nm
x-prof. 1.01± 0.10 1.21± 0.10
y-prof. 1.01± 0.10 1.21± 0.10
nom. 0.68 1.08

Table 4.3: Resolution measurement by imaging the point spread function of the
objective ’BA1002’ after active alignment in µm. The data was taken using the
gold foil. The results are significantly better than for the passive alignment and
closer to the nominal values.
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4.1 The high-resolution objective

the active alignment. With the gold foil the active alignment, however, improved
the PSF drastically and the measured resolution for the objective BA1002 was much
closer to the nominal parameters. Thus, we conclude that taking the tube of the
objective as a reference plane for the parallel alignment does not deliver the best
results. This is probably caused by a tilt of the symmetry axis of the lens system
with respect to the tube axis. It will be challenging but not impossible to develop
a deterministic alignment procedure taking this deviation into account. For this
the objective has to be aligned in its optimum position with the help of directly
measuring the PSF. Then, the position of the tube mirror’s backreflection should be
recorded as well as the rotation angle of the objective. As soon as the objective is
used for imaging at high-resolution such an alignment could get necessary.

4.1.3 Examination of the trap focus
For the microtrap the focus shape and size are essential. The test setup provided
the possibility to directly examine the created focus which is very difficult in the
experimental setup. At the same time sensitivities of the optical trail on the focus
shape and eventual limitations could be explored.

In general the size of a focus depends on the numerical aperture and the wavelength
of the light λ in the following way

w0 = K
λ

2NA , (4.2)

with K parametrizing the illumination of the aperture (for homogeneous illumination
K = 0.82). In case of focusing a Gaussian beam of a waist wap clipped by an
aperture of radius rap, the change in focus size can be described by the truncation
ratio T = wap/rap that affects the value of K [CVI]:

K(T ) = 0.82 + 0.32
(T − 0.28)1.82 −

0.27
(T − 0.28)1.89 (4.3)

We measured the focus by imaging it with a commercially available microscope
objective (Melles Griot, r = 0.92(10) µm at 1064 nm) with a magnification ofM ≈ 40
onto a CMOS camera (Guppy F503, pixel size 2.2 µm). For a collimated beam with
a wavefront errors < λ/4, a waist of 9.95mm and an objective aperture diameter of
24.4mm the calculated focus size is 0.88 µm according to equation (4.2). However,
we measure a size of about 1.1(1) µm. The aspect ratio an optical trap created with
a Gaussian beam with this waist is η = 4.6 in harmonic approximation. For a beam
waist of 15mm we expect 0.82 µm and find 0.95 µm. This clearly shows that the
performance of the objective is not at its nominal values.

If one is again interested in studying quasi-1D physics the aspect ratio η has to be
increased. To obtain a more elongated trap the diameter of the Gaussian beam could
be decreased. This would require a lot of alignment effort in the later microtrap
setup. Another possibility is to truncate the beam by an additional aperture that
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Figure 4.6: Focus size due to beam truncation. The focus is measured for a
gaussian beam of wap = 19.9mm, indicated by the dashed line as a function of
the aperture diameter rap and compared to the predicted focus according to
equation (4.3) (solid line). The numerical aperture is NA= sin(rap/2f) where
f = 20.3mm is the effective focal length of the objective.

is set centrically to the beam. This could cause a rise of the side maxima of the
focus due to diffraction. However, by setting the aperture very far away from the
objective this effect was not very strong. The intensity of the side maxima never
exceeded 15% of the peak intensity. The measured dependence of the waist on the
aperture size is shown in figure 4.6 and compared with the aforementioned relation.
With the given Gaussian beam size the focus waist gets insensitive to aperture sizes
larger than the beam waist. The fact that we measured a beam focus of 1.3 µm for
open aperture was perhaps due to a trap beam with bad wavefront quality or a not
perfectly centered aperture. For rap ≈ 10mm the focus size reaches the value of the
first generation microtrap.
The focus imaging setup was mounted on a motorized stage (Newport, CONEX-

TRA25CC) and could be moved along the beam axis with high-precision positioning2.
This allows for the observation of beam profiles of the focus with well-defined relative
distances. Imaging the beam profile slightly before and after the position of the
focus we observed a non-symmetric form. We were able to reduce this asymmetry by
improving the quality of the incident beam. This will be presented in detail in section
4.2.2. However, these features never completely disappeared and partly rotated with
a rotation of the objective.
By focusing also a collimated beam at 671 nm we could further determine the

chromatic focus shift for the two design wavelenghts of the BA1001 objective to
15.3(10) µm. The distance has been measured by the motorized stage.

According to our results from the objective characterization we saw that both
objectives show good but not perfect characteristics compared to the nominal pa-

2The specifications claim a minimum incremental motion of 0.2 µm and a guaranteed unidirectional
repeatability of 2 µm.
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rameters. Deviations have been observed especially in the resolution measurement
and the focus size. We have chosen the objective BA1001 for our setup as its passive
alignment led to better results.

4.2 The optical setup
The optical potential created by focusing a collimated beam with the objective serves
as a microtrap. A change of the angle of the incidence beam shifts the focus position
in the focal plane. This angular tilt is provided by the AOD via deflection, as already
illustrated in figure 4.1. A more detailed description of the device and its working
principle will be given in section 4.3. The objective and the AOD represent the two
key elements of the optical setup for the new microtrap. Furthermore it contains
beam shaping and monitor paths for optimal control as well as alignment.

4.2.1 The breadboard for shaping the beam
Due to the new components the optical setup had to be completely redesigned and
rebuilt. For the very sensitive high-resolution objective additional alignment tools
are necessary. Furthermore, the AOD and the necessary components have to be
included in the beam path. The basic setup contains a small collimated beam at
1064 nm that incidents an AOD. The deflected beam is expanded by a telescope and
then focused with the objective.
Figure 4.7 illustrates the layout in detail. The infrared beam exits the fiber and

is collimated to a waist of 1.23mm [Kli12]. For polarization cleaning it passes a
half wave plate and a polarizing beam splitter cube (PBS). A pellicle beamsplitter
extracts a small but fixed proportion of intensity of the beam for power stabilization
before the AOD. Then, the beam enters the acousto-optic deflector where it is
deflected with an angle depending on the frequency of the applied radio frequency
signal. Positioned at a distance of its focal length f = 18.5mm an aspheric lens
transfers the angular deviation to a parallel beam shift. A movable aperture mounted
together with the spherical lens blocks the redundant deflection orders. A second
lens with f = 300mm completes the telescope for the beam expansion to a waist
of approximately 19.9mm. Three mirrors in the telescope allow the alignment of
the beam’s incident angle and position on the second lens. A subsequent beam
sampler extracts a part of the expanded beam for monitoring. For this, the beam is
focused by a f = 500mm lens onto a CCD camera (PointGrey, FL3-GE-13S2C-C).
It can be used to monitor the configuration of the foci created by the AOD in the
intermediate focal plane. Furthermore, the beam profile is monitored by a beam
profile camera (WinCam) with a lens of f = −75mm. This camera together with
the beam sampler and the reference mirror is part of a Michelson interferometer for
the objective alignment. After the beam sampler the main part of the trapping beam
passes a non-polarizing beam splitter (NPBS) that reflects 50% of the power through
a lens onto a photodiode. The signal is used to stabilize the microtrap beam power.

41



Chapter 4 A new microtrap setup

Figure 4.7: Layout of the new microtrap setup. It contains the AOD and the
objective as well as an interferometer, power stabilization and monitoring paths.

The transmitted beam passes a dichroic mirror, reflective at 671 nm and mounted in
an angle of 45◦. The trap beam enters the objective at the end of the breadboard
where it is focused through the vacuum window into the chamber.

The objective is mounted 2mm above the chamber’s upper reentrant viewport.
Through this vacuum window, the vertical beam for the magneto-optical trap has to
be retro-reflected for the MOT loading sequence. The collimated MOT beam which
passes the objective from below exits at the top as a diverging beam. Just above the
objective the beam is collimated with a lens, traverses a quarter wave plate and hits
a mirror where it is retro-reflected. The reflected beam passes the objective again
and enters the chamber as a collimated beam. Therefore, although the objective is
present the MOT can load. However, the mirror would block the microtrap beam.
Therefore, it can be moved out of the beam by a servo motor 2 seconds before the
microtrap is required.

For the detection in the MicroMOT, both the microtrap and the MOT have to be
functional. The MOT beam is therefore reflected by the dichroic mirror onto a 2-”
retro-reflector system3. Due to the large divergence angle of the MOT beam and the
long distance to the retro-reflector, the final MicroMOT beam diameter amounts
to only 1.5mm which is sufficient to recapture the cold atoms released from the
microtrap.
The performance of the objective is very sensitive to the exact alignment with

respect to the vacuum window and to the incident beam, as already shown in section
4.1. For this alignment procedure the aforementioned interferometer is used. The
reference mirror is mounted such that it is hit perpendicularly by the incident light
from the beam sampler. With its help the backreflected beam from the aligned
objects can be superimposed with the incident one with high precision by minimizing
the fringes of the interference on the camera. Consequently the objective is hit by
the beam in the same angle as the reference mirror.

3again consisting of a convex lens, a quarter wave plate (1.5” diameter) and a mirror
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In a first step the incident beam is aligned such that it hits the vacuum window
centrally and perpendicularly by minimizing the number of fringes on the camera4.
Then the objective is installed and a dielectric mirror is laid on its case. Hereby,
the objective should be aligned perpendicularly to the incident beam, as well. Note
that we have observed in section 4.1 that the reference plane for the objective does
not coincide with the lens plane of the objective. Thus it is to be expected that the
nominal parameters cannot be achieved by this alignment method.

Another source of wavefront errors is the vacuum window in the reentrant viewport.
It has a wedge of about 1.5 ’ and can thereby degrade the focus of the microtrap.
Additionally its thickness has a tolerance of 0.1mm. The combined change in rms
optical path difference and the resulting wavefront error amount to λ/10. This has
to be added to the error of the objective itself.

4.2.2 Diagnostics of the trap beam
In section 4.1.3 we have seen that the quality of the focus is very sensitive to
wavefront errors of the objective. A perfect objective transfers the plane wavefronts
of a collimated beam into spherical wavefronts resulting in a small and symmetric
focus. It immediately gets clear that the focus quality is also influenced by the
incident beam. As soon as it deviates from spherical wavefronts or from plane
wavefronts in the limit of perfectly collimation the focus gets asymmetric and larger.
The most common components of wavefront error apart from defocusing are third-
order aberrations like astigmatisms, comas and spherical. For quantifying these
components we need a diagnostic tool that makes the wavefront distortions of the
beam measurable.
We use a wedged, lateral shear plate interferometer that usually also serves for

beam collimation [Bat47, Mur64]. By hitting a glass plate at a certain angle the
incident beam is divided into two components with similar power, as shown in
figure 4.8. Due to the different optical path lengths these two components are
shifted with respect to each other and their overlap results in an interference pattern
[Ril77, Swe90]. The device compares the wavefront at two different spatial positions
possible due to a finite shift by the lateral shear. This can be understood as a finite
derivative of the wavefront in the direction of the shear and thus delivers information
about the wavefront curvature. The resulting interference pattern is projected on a
diffuser plate which also provides a reference line.
A collimated beam without abberations results in an interference pattern of

straight fringes parallel to the reference line. Any defocusing, i. e. a beam with finite
curvature radius in the shear direction causes the fringes to be tilted. By counting

4The vacuum window is anti-reflection coated for both design wavelengths. So the reflected part of
the trapping beam is barely visible and also the interference contrast on the camera is low. For
a pre-alignment we implemented a green laser beam (532nm, 1mm diameter) and overlapped
it with the large infrared beam with the help of two cameras. Then we aligned the setup for
the back reflection of the green beam. Switching back to the infrared beam the hardly visible
interference on the WinCam was optimized.
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Figure 4.8: Scheme of the lateral shear plate interferometer. The incident beam
is divided into two parts with same power that interfere on a diffuser plate
with a reference line. A telescope images the pattern onto a CCD camera. The
fringes are a measure of the beam’s wave front curvature.

the tilted fringes crossing the reference line one can deduce the optical path difference
in wavelength between the center and the edge of the beam. Exploiting this the
curvature radius in one direction of the incident beam is detectable. For beam
curvatures deviating from the spherical form the fringes start to bend. Spherical
abberations, e. g., result in s-like fringe forms whereas coma can cause u-formed
fringes.
To distinguish the different abberation types and do a full analysis of the beam

the interference pattern has to be detected at least in two different axis directions
[Swe90]. This allows for a distinction between a global defocus and an astigmatism
of the beam. Therefore the shear interferometer is fixed on a rotatable mount. With
the information from the shearing interferometer at hand it is not only possible to
detect wavefront errors but also to align the components in the optical path5.

For the beam diagnostics we use a commercially available shear plate interferometer
(Thorlabs, SI254). Incident with an angle of 45◦ on a glass plate out of UV fused
silica with a wedge of 18 arcsec and a thickness of 6.35mm the interference pattern
consists of three to four interference fringes for an almost collimated beam with
19.9mm diameter. The interference pattern projection on the diffuser plate with the
reference line is detected with a CCD camera (Thorlabs beam profiler, BC106-VIS)
using a 5:1 telescope, see figure 4.8.
The most critical element in the optical train concerning wavefront errors is the

aspheric lens right behind the acousto-optic deflector. If it is not hit perpendicularly
it will cause an astigmatism of the beam. If it is in addition hit off-center other
errors like coma also can appear. It is thus necessary to exactly align the beam
to the lens. The same wavefront errors can be caused by the second lens in the
telescope. However, its position is not as sensitive to the wavefront due to the large
focal length.
With an alignment minimizing the wavefront errors of the beam we were able to

5The exact alignment procedure of the entire microtrap setup can be found in the section A.
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reference line

a) b)

Figure 4.9: Interferograms of the trapping beam taken with a lateral shear plate.
(a) horizontal beam direction, (b) vertical beam direction. The dashed lines
are parallel to the reference lines. The solid lines interpolate the tilt of the
interference fringes. The phase shift of the wavefronts are < λ/8 over the beam
size in both directions. The total astigmatism is smaller than λ/6.

reduce the initial distortions of ≈ λ to values smaller than λ/6. This can be read off
the depicted interference patterns in figure 4.9. The visible wavefront error is mainly
an astigmatism. This method delivers a quantitative measure of the trapping beam
quality.
With this tool at hand we improved the alignment of the optical train creating

the microtrap. With minimization of the wavefront errors in the beam we can fully
exploit the performance of the high-resolution objective. This is promissing for the
preparation of atoms in the new microtrap.

4.3 The acousto-optic deflector
The acousto-optic deflector (AOD) represents the second key element of the new
microtrap setup. It is supposed to create multiple-well potentials that are well-
controllable in their depth and separation.
The working principle is based on the acousto-optic effect. With a piezo-electric

transducer density waves are induced in the AOD crystal that act like a grating
and partially deflect the transmitted beam. The density waves are created by a
radio frequency signal. Its power influences the deflection efficiency of the beam.
The frequency translates into the deflection angle. Via a lens an angular deviation
translates into a position shift of the focus.

In our setup we use a two-axis acousto-optic deflector (A2D-404AH4, IntraAction
Corp.) out of dense flint glass through which the not yet expanded trapping beam
is fed. It deflects light at radio frequencies between 25MHz and 55MHz and is
impedance matched for a center frequency of 40MHz. Its deflection angle amounts
to 2.9mrad per 10MHz. This leads to a spatial deplacement of 10.6 µm in the focal
plane of the objective over the possible frequency range [Kli12] being consistent with
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Figure 4.10: Creating a multiple potential landscape. The radio-frequency signal
is generated by a voltage-controlled oscillator and variably attenuated by mixing
with a controllable DC-voltage. For the creation of the double-well two such
branches are combined with a splitter. The signal is then amplified and fed
through a coupler for monitoring before it is applied to the AOD. This scheme
can easily be expanded by adding further frequency generating components.

the calculation from [Fö05]. This range corresponds to about 9 focus waists.
The potential well depth of a single optical trap depends on the optical light power

and thus on the power of the deflected beam. Keeping the beam power going into the
AOD constant, the deflected beam power is determined by the diffraction efficiency
which varies over the frequency bandwidth and over the radio-frequency amplitude.
In addition, the impedance is not matched for the whole radio-frequency bandwidth.
This results in a complex effective diffraction efficiency of the beam. The measured
diffraction characteristics for both axis of the device is presented in [Kli12]. It has
been measured by stabilizing the beam power that enters the AOD and by recording
the power of the diffracted beam as a function of frequency and of the attenuation
of the rf signal with which we control the AOD.

4.3.1 RF Setup for creating a double-well potential
Applying more than one radio frequency on the AOD causes the initial beam to be
deflected in different angles executing more than one deflected beam. This results in
multiple-potential wells in the focal plane of the objective. Via the radio frequency
signals each well can be controlled and tuned individually concerning its depth
and position in the focal plane. The most simple configuration to start with is the
creation of a double-well potential. It allows to get experience in the opportunities
and limitations of such a configuration. This is also done by investigating the
tunneling of atoms between the two wells.
For creating two deflected beams two sources of radio frequency are required at

one of the AOD axes. The radio frequencies are produced by commercially available
rf components. The exact scheme is depicted in figure 4.10 and designed for simple
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control via analog voltages provided by the experiment control system (ADWin).
The frequencies are created by voltage controlled oscillators (VCO, MiniCircuits,
ZOS-50+) and attenuated by mixing (MiniCircuits, ZX05-5-S+) with a DC voltage.
The resulting frequencies are combined in a reversely used splitter (ZFSC-2-1-S+)
and amplified by 46 dB (ZHL-5W-1X). With a coupler (ZFBDC20-61HP) right before
the radio-frequency input on the AOD we can monitor the created frequencies and
observe the respective powers that must not exceed 4W in total.

For a clear investigation of the physical phenomena in the double well a key concern
of the radio-frequency setup is the signal stability. Unfortunately the individual well
depths cannot be stabilized via a feed-back loop6. So the relative stability has to
be characterized. It amounted to about 1%�. Details can be found in [Kli12]. This
seems to be sufficiently stable for performing precise experiment as we will note in
section 5.3.

Starting from controlling the double-well system, the setup can easily be expanded
to more wells in a row or to a two-by-two array of wells with individual control. It
thus may open the way to investigate few-site Fermi-Hubbard physics.

4.4 Implementation of the new microtrap setup
into the experiment

The testing of the objective and the characterization of all the elements for the new
microtrap provided good results. This encouraged us to implement the new setup
into the experiment.
As already mentioned the high-resolution objective has been designed for large

numerical aperture and a focal length of 20.3mm. Therefore, the optical device has
to be large in diameter and mounted closely to the vacuum window. Figure 4.11
illustrates the space requirements of the setup. Besides the objective the reentrant
viewport contains the Feshbach coils. They had to be replaced by a pair of new coils
with adapted dimensions. The basic layout of the coils and the winding number,
however, stayed unchanged and can be found in section 3.1.4 or in [Zü09]. The
replacement of the coils gave us the opportunity to extend the scheme for the
magnetic field stabilization. In a next step the objective could be implemented and
the microtrap was superimposed with the dipole trap.

In section 4.4.1 the implementation of the Feshbach coils and the extension of the
current control scheme is described. Section 4.4.2 presents the way to superimpose
the small-volume microtrap with the optical dipole trap.

6Reading out the intensity of the well on the CCD is too slow and too unprecise for an active
feed-back.
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Figure 4.11: The objective in the reentrant viewport. The five-axis mount
(Newport LP2a) allows for the alignment of the objective, depicted with its lens
configuration, in the reentrant viewport. The objective is mounted close to the
vacuum window. The Feshbach coils are placed around the vacuum window
guaranteeing high optical access and at the same time being close to the atomic
sample.

4.4.1 New Feshbach coils for the experiment

To control the strength of the inter-particle interaction via Feshbach resonances
during the experimental sequence the Feshbach coils create a magnetic offset field. In
the phase of the sequence where we spill the atoms out of the microtrap the magnetic
field gradient is applied by the MOT coils. Unfortunately, they can only provide
a rather small gradient due to the larger distance to the atoms. In addition the
relatively high inductance leads to a slow ramp speed. To overcome this disadvantage
we developed a scheme to create the magnetic offset field and the gradient by the
Feshbach coils at the same time, as proposed in [Zü09]. The replacement of the
Feshbach coils gave us the opportunity to implement that scheme.
The basic idea, illustrated in figure 4.12 is to use two separate power supplies

(SM15-400, Delta Elektronika) that deliver the currents I1 and I2 for the two coils.
Each of them can deliver a maximum of 400A and is driven via remote control
from the experimental control system ADWin. If they deliver the same current the
created field will be a pure offset (gradient) field for Helmholtz (anti-Helmholtz)
configuration. Delivering different currents results in a superposition of offset and
gradient field.
From the desired gradient and offset field values we can easily deduce the corre-

sponding currents I1 and I2 for the coils. For active current feed-back we measure
the current difference (∆ = I1 − I2) that is proportial to the gradient field and the
current sum (Σ = I1 + I2) proportional to the offset field via two current transducers
(Danfysik 866 and LEM IT1000). They are stabilized via two digital feed-back loops

48



4.4 Implementation of the new microtrap setup into the experiment

Power supply
lower coil

+
-

Σ

+
-

ADWin

HIP

upper coil

lower coil

Remote
control

IΔIΣ
I1

I2

Power supply
upper coil

Δ

Figure 4.12: Current control scheme of the Feshbach coils. Two separate power
supplies are driving the two Feshbach coils independently. Thus, offset fields can
be created together with an additional gradient fields using only the Feshbach
coil pair. The currents are measured via current transducers detecting the
sum and the difference of the currents. Therewith the ADWin stabilizes the
magnetic field by corresponding feed-back onto the power supplies.

implemented in the ADWin which produce the signals for the remote control of each
power supply. As the two feed-back loops are coupled an important issue is to avoid
an oscillation in the control voltages. We managed to implement the stable feedback
loop by a proper choice of the loop parameters and at the same time achieved a
response time of 2ms for driven current steps of 25A.
For the calibration of the gradient field created by the coils we compensate

gravity with a gradient in the Feshbach coils. The required gradient corresponds to
−34.2(2)mV in the current transducer ∆. From this calibration we obtain that 1V
at the analog input of the ADWin corresponds to 32.70(2)G/cm.

With the newly implemented scheme we are able to apply a magnetic field offset of
approximately 1100G and still add a field gradient of up to 130G/cm. So, especially
at intermediate offset fields we are very flexible in the choice and the ramp speed of
the magnetic field gradient. This will be important for preparation and spilling of
the microtrap.

Once the Feshbach coils are implemented in the reentrant viewport further align-
ment is necessary. Placed slightly further appart than Helmholtz configuration
the coils produce a confining magnetic field saddle in the radial plane, as already
mentioned in section 3.1.4. This saddle has to be overlapped with the optical dipole
trap because in the direction of the weak confinement of the dipole trap the magnetic
field saddle can affect the position of the atoms as a function of the magnetic field
strength. The shifting of the saddle was done by monitoring the detected escape
direction of a small and cold BEC after release and by adding small pieces of steel
to the coil. The exact procedure can be read in [Lom11].

49



Chapter 4 A new microtrap setup

Figure 4.13: A resonant beam passing the magneto-optical trap and scattering
off atoms. Assuming that the center of the objective axis coincides with the
position of the resonant beam we could localize and align the objective with
respect to the dipole trap, getting a reliable starting point for the overlap of
the microtrap with the dipole trap. Picture taken with Guppy camera.

4.4.2 Superimposing the microtrap with the dipole trap

After the installation and alignment of the new Feshbach coils, the objective was
mounted and interferometrically aligned. It creates the microtrap with a size of
about 1× 1× 5µm3 that has to be superimposed with the 10× 10× 100µm3 large
dipole trap located in the center of the octagon vacuum chamber with an estimated
uncertainty of 2mm. The superposition of the two optical traps is challenging. We
can only detect the microtrap position if it contains atoms. But this means that
atoms already have to be transfered from the dipole trap by spatial overlap.
For the overlap with the dipole trap the alignment of the objective in x, y and

z direction has to be feasible with a micrometer precision. The objective in the
reentrant viewport is mounted in a five-axis lens positioner (Newport, LP-2A) as
illustrated in figure 4.11 b. It allows for independent positioning in the two axes of
the focal plane (x and y), an angle tilt via two additional screws and adjustment
in direction of the beam axis z without rotating the objective itself. We align the
objective centrically to the viewport. To get a reference in z-direction a 0.5mm thin
ring made out of PVC is put on the vacuum window and the objective is moved
downwards until it touches the ring. Starting from this reference it is moved upwards
by about 1.5mm to the design distance.

With no other tool at hand we would now have to scan a volume of 8mm3 in steps
of 10 µm in each directions until we could see an impact of the microtrap on the
dipole trap image. This is a rather time-demanding task and so we tried to find out
the objective position with respect to the dipole trap in a different way.
The exact position of the dipole trap can be determined by in-situ absorption

imaging from two different directions onto two CCD cameras. The detailed imaging
scheme is illustrated in figure 3.2. For visualizing the objective’s position on the two
cameras we used a collimated beam at 671mm with 1mm diameter and aligned it
very precisely perpendicularly and centrically on the objective. We assumed that
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Figure 4.14: Overlap with the dipole trap. (a) shows an absorption image of the
dipole trap that is hit by the microtrap beam at the outer left wing. Howeverm
in the picture the focus of the microtrap is still above the dipole trap, visible
by two pixels with higher amplitude. (b) shows the two traps after the precise
superposition. The microtrap sits centrically in the dipole trap in each direction.

the slightly focused resonant beam will be very close to the later microtrap position.
In a small magneto-optical trap with low density we wanted to see its impact on
the atoms. As shown in figure 4.13 we could observe a beam of atoms scattered
out of the sample. It is caused by the resonant photon absorption in one direction
and the resulting transfered momentum kicks. By imaging the resonant beam with
the two cameras we could map the position of the beam and thus of the objective
with respect to the dipole trap. Starting there, we moved the objective in x and y
direction until the assumed position of the microtrap coincided with the dipole trap
position.
In a next step we loaded atoms into the dipole trap. At the same time the

microtrap beam was focused into the vacuum chamber containing an input power
of about 200mW 7. After altering the height of the objective the impact of the
microtrap beam was visible via absorption imaging as an additional small region of
higher atom density appearing at the outer wing of the dipole trap, see figure 4.14.
The actual microtrap focus was about 50 µm above the dipole trap.

With the microtrap already hitting the dipole trap we started to precisely overlap
the two traps. Meanwhile we successively ramped down the power in the microtrap
beam as the high atom density in the microtrap leads to atom loss. As the adjustment
in the focal plane seemed easy to us and as the trap moves in that plane when
adjusting the z-direction, we decided to first align the height of the microtrap to a
precision of about 7 µm and shift the dipole trap slighly in vertical direction. Then
the overlap in the focal plane was aligned, ending up with the microtrap sitting
centrically in the dipole trap as shown in figure 4.14.

For the precise superposition of the two traps in the focal plane of the microtrap
7Note that this is three orders of magnitude more than the power for the final preparation of our
atoms in the microtrap.
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we used absorption imaging in vertical direction. The absorption beam hits the
atomic cloud from below and the resulting shadow is imaged through the objective
and an additional lens onto a CCD camera. As the objective creates the microtrap
filled with atoms and also images it onto the CCD camera, the microtrap position
recorded on the camera will not change when the position of the objective is changed.
For the overlap the dipole trap has to be shifted to the microtrap position. This
fact is very useful in order to re-align the microtrap after a complete removal and
re-installation of the objective. If nothing in the imaging path except the objective
is changed, the two traps are automatically overlapped if the dipole trap position
coincides with the former microtrap position on the camera.

52



Chapter 5

Few-fermion systems created with
the new microtrap setup
After testing and integrating the new setup with the high-resolution objective and
the acousto-optic deflector into the experiment we characterized the properties of the
new microtrap. We first implemented our deterministic preparation scheme and the
detection of few-atom samples. The results will be presented in section 5.1. After
this we measured the trap frequencies to gain information about the shape of the
optical potential. From the measurement, described in section 5.2, we can infer the
focus size and compare it with the results from the direct focus-size measurement
described in the previous chapter.

In a next step we used the acousto-optic deflector to create a double-well potential.
We prepared a pair of atoms on one site of the double well and measured the evolution
of the system. The detailed scheme of the preparation system and the detection
of the atom number per well is explained in section 5.3.1. We could observe and
control coherent tunneling of the atoms between the two wells presented in section
5.3.2 which demonstrates our high level of control of the system.

5.1 Deterministic preparation revisited
To deterministically prepare samples of few atoms in the new microtrap we use the
same preparation technique as presented in section 3.2. However, with the high-
resolution objective we expect a smaller trap focus and thus a larger level spacing in
the microtrap. This may result in a higher atom number preparation fidelity.

To find the spill parameters for highest atom number preparation fidelity we start
by loading about 450 atoms from the shallow crossed-beam optical dipole trap into
the microtrap. We then apply a magnetic field gradient of B′ = 31G/cm created by
the Feshbach coils which reduces the atom number to about 50 atoms. To further
reduce the trap depth, the power in the optical trap is reduced from its initial value of
393 µW (3V on the power detector) to a lower value Vspill within 8ms. We hold the
power for 25ms at this lower value to allow the unbound atoms to escape from the
trap region. Then we ramp the trap potential up to the initial value within another
8ms. Finally, the remaining atom number is detected via fluorescence imaging in the
MicroMOT, as described in section 3.2.3. We repeat this measurement for different
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Figure 5.1: Histogram of the measured atom numbers. We detect the prepared
atom number by fluorescence imaging in the MicroMOT. The clear peaks
separated by ≈ 7σ are the result of discrete atom numbers.

Vspill in order to find the spill levels. Figure 5.1 shows a histogram of the fluorescence
signal for all measurements during this run. It shows clear and distinguishable peaks
revealing discrete numbers of atoms. For up to 18 atoms the peaks are well separated.

The mean atom number as a function of spill depth is shown in figure 5.2. Starting
from zero atoms at Vspill = 1.8V the mean atom number rises with increasing trap
depth as more and more atoms stay in the trap. Clear steps of even atom numbers
are visible that prove the double occupancy of the trap levels with the two hyperfine
states |1〉 and |2〉. In between the steps the standard deviation of the mean atom
number rises. By setting the spill depth, we can choose how many atoms we want
to prepare. However, the plateaus of mean atom numbers are not at integer atom
number but slightly lower. This is caused by a non-perfect atom number preparation
and detection in the MicroMOT.
Compared to the first-generation microtrap, the new data show much broader

plateaus with constant atom number preparation as a function of the trap depth.
So, the preparation is less sensitive to instabilities of the trap depth and the spill
gradient. This could directly translate to a higher preparation fidelity in the new
microtrap due to the reduced focus size of the microtrap. Even for an atom number
of 18 we still observe a distinct plateau where we could deterministically prepare our
system. This is a factor of two more than we could reach with the old system.

For low trap depth the atom number increases in steps of two atoms. At about 10
atoms the slope of the atom number over trap depth Vspill increases. This structure
is linked to the trap shape and the resulting occupation of the levels. To illustrate
this we assume a cylindrically symmetric harmonic trap with an aspect ratio of
η = ω⊥/ω‖ = 5. It is filled with a two-component Fermi gas at zero temperature
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Figure 5.2: Deterministic preparation of a few-atom sample with the new micro-
trap setup. By tuning the optical potential depth we can prepare the desired
atom number. The clear steps show the possibility of deterministic preparation
with a high fidelity due to the reduced trap size. The error bars denote the
standard deviation. Due to non-optimal atom number detection the steps are
at 90% of the corresponding atom numbers. The structure shows the three
dimensional nature of the trap. For up to 10 atoms radial excitations are frozen
out and only the axial levels are occupied as we only observe steps with the
number of atoms increasing by two. From there on we observe steps of four
atoms due to occupations in the radial direction.
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Chapter 5 Few-fermion systems created with the new microtrap setup

where every trap level occupied by two atoms. As the energy differences between
the axial levels h̄ω‖ are smaller the lowest levels occupied by pairs of atoms are only
axial excitations. Radially they are in the ground state. Hence, the number of atoms
is expected to increase in steps of two. As soon as an energy of 5h̄ω‖ is reached, also
the first excited states in the two radial directions can get occupied and the atom
number increases by 6 every time the potential depth is increased by h̄ω‖.
We indeed have such a quasi-harmonic trap, but do not expect an integer aspect

ratio and a perfect cylindrically symmetry. Nevertheless, the coarse level structure
should be similar when we fill the trap with atoms and spill to a certain point.
However, for an atom number larger than 10 the step size does not increase by 6
atoms, as we would expect from our simple picture. This might result from our
spilling process that strongly deforms the trap potential. To spill atoms from the
trap a magnetic field gradient is applied in the axial direction of the microtrap.
Atoms occupying the axial levels experience the deformed potential. In a harmonic
three dimensional trap, this deformation in the axial direction has not much effect on
the radial directions of the potential. Atoms, populating these states would not be
spilled out immediately. Only the anharmonicity of the spilled optical trap couples
the radial levels to the axial direction and leads to their depopulation. It might be
that the spilling process causes the non-trivial steps in atom number. This has to be
investigated in more detail.

Nevertheless, our system allows for a deterministic preparation of few-atom samples.
We reach a preparation fidelity of about 80% for two atoms. The deviation from
unity preparation fidelity can be caused by non-occupied levels in the system or by a
non-perfect recapture into the MicroMOT. The latter possibility seemed more likely
to us as the implementation of the objective forced us to reduce the diameter of
the MOT beam in vertical direction to about 1.5mm and the measured distance
between the microtrap and the MicroMOT was half this size1. Yet, the preparation
fidelity is large enough to continue the characterization of the new microtrap.

5.2 Characterization of the new microtrap
potential

The shape of the optical trap determines the size of the particles’ spatial wave
functions. The knowledge of the trap shape is thus essential to estimate, e. g.,
tunneling times of our future systems and to compare the measured values with the
theoretical prediction.
A trap characterization by direct imaging of the trap focus is not possible. We

can also not expect the same waist size as investigated during the test of the high-
resolution objective in section 4.1 where we used a high-quality vacuum window.

1After the measurements presented in this thesis, we minimized the distance between the microtrap
and the MicroMOT. The resulting preparation fidelity of 95% for two atoms confirmed that
the recapture was not at its optimum before. The measurement results are presented in the
appendix, see B

56



5.2 Characterization of the new microtrap potential

a)

14.2 14.4 14.6 14.8 15.0 15.2

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

M
ea

n 
at

om
 n

um
be

r

Modulation frequency for symmetric transition [kHz]

b)

Figure 5.3: Parametric heating to determine the trap frequencies. (a) illustrates
the method of parametric heating and subsequent detection to determine the
trap frequencies. Two atoms are prepared in the ground state of the trap.
Subsequently, it is modulated by a frequency ω/2π. If the frequency is equal
to a multiple of the trap frequency atoms are transfered to higher levels. By
spilling we detect the remaining atoms in the ground state. (b) shows the
measurement result for a symmetric trap modulation. At ω/2π=14.6 kHz the
detected mean atom number is minimal. This frequency corresponds to the
energy necessary to transfer atoms from the ground state to the second excited
axial level.

However, there is a way to deduce the trap shape. We can measure the energy
difference between the lowest trap levels and determine the trap frequencies in radial
and axial direction for a certain power of the trapping beam. Then, we are able
to determine the aspect ratio of our trap and to calculate the focus waist of the
trapping beam.

The difference in energy between the lowest lying trap levels can be measured by
transferring atoms from the ground state into higher levels. For this we prepare atoms
in the lowest state and modulate the trap with a certain frequency. If this frequency
is resonant to a transition into higher energy levels the atoms will be transfered into
this state, as depicted in figure 5.3 a. This technique is called parametric heating
[Fri98]. In principle we can modulate the trap position or the trap depth. Due to
symmetry reasons this leads to an excitation of either an odd or an even number of
trap levels, respectively.

For the measurement we prepare two atoms in the ground state of our trap with a
fixed depth of 390 µW (cf. figure 5.3 a) and then apply the modulation pulse. We
detect the remaining number of atoms in the ground state by a second spill down to
the ground state level.
An excitation which couples states of even parity is achieved by modulating the

trap power. The trap depth is actively stabilized by a feed-back using an AOM that
controls the transmitted light power for the microtrap, see section 3.2. In detail, the
feed-back varies the power of the radio-frequency applied to the AOM. For the trap
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Figure 5.4: Measurement of the radial trap frequencies. The fitted resonances
are at 31.921(8) kHz (blue), 33.54(2) kHz (green) and 35.07(4) kHz (yellow). We
associate the blue and yellow resonances with the two radial trap frequencies.
The central resonance is probabily due to a superposition of the other two
frequencies. From these measurements we infer the trap focus to be 1.17(6) µm
in size assuming a Gaussian beam having the mean radial trap frequency. The
error accounts for the uncertainty in the power and the deviation from the
mean trap frequency.

frequency measurement an intensity modulation is added to the rf signal and the
bandwidth of the feedback loop is set below the modulation frequency.
We have found an excitation signal at 14.860(7) kHz (cf. figure 5.3 b) that we

associated with a symmetric transition from the ground state into the second excited
axial trap level. Two further resonances, found at about 61(1) kHz and 69(1) kHz (cf.
appendix C), correspond to the symmetric transitions into the second excited radial
trap levels. As the two radial levels are non-degenerate we conclude that the trap
beam has an astigmatism of ≈ 10%. A similar value was already found for the first
generation microtrap and can at least partly be attributed to the vacuum window.

With the implemented AOD we also have the possibility to move the trap center
in the focal plane and excite atoms to a state with different parity. To do this,
we modulate the rf-frequency applied to the AOD. Regardless of the modulation
direction in the focal plane we see resonances at 31.921(8) kHz, 33.54(2) kHz and
35.07(4) kHz, see figure 5.4. Since they are situated in equal distance we associate
the two outer resonances with the radial trap frequencies. This is in agreement with
the measured astigmatism of the trap. The central peak may be a superposition
of both trap frequencies, but to understand this in detail further investigations are
necessary. A detection of the trap frequency in axial direction via the antisymmetric
transition into the first excited level was not possible as we can only modulate the
center position in radial direction.
With the measurement of the trap frequencies, summarized in table 5.1, we can

determine the shape of the trap at a depth of 390 µW by assuming a perfect Gaussian
beam. A focus waist of 1.17(6) µm can reproduce the mean of the two radial trap
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trap direction transition 0 to 1 transition 0 to 2 anharmonicity
axial ω‖/2π not measured 14.860(7) kHz
radial 1 ω⊥,1/2π 31.921(8) kHz 61(1) kHz 4(2)%
radial 2 ω⊥,2/2π 35.07(4) kHz 69(1) kHz 2(1)%

Table 5.1: Measured trap frequencies by parametric heating of a prepared two-
atom system in the ground state. We are able to transfer the atoms from the
ground state to the first and the second excited trap levels. The trap shows an
astigmatism of about 10%. The measured aspect ratio of the trap is η ≈ 4.5.

frequencies that we measured. The error accounts for the power uncertainty of
10% and the deviation of the measured trap frequencies from the mean frequency.
The calculated aspect ratio for this focus size, using a harmonic approximation is
≈ 5. For the measured aspect ratio we found η ≈ 4.5 which is consistent with the
measurement of the atom number as a function of the trap depth in section 5.1.
The new microtrap setup thus represents a significant improvement to the first

generation microtrap. The small focus size guarantees a higher preparation fidelity
with a lower stability requirement on trap power and the spill gradient.

5.3 Preparation of few-fermion systems in a
double-well potential

After we have successfully re-implemented the preparation scheme for low atom
numbers in our new microtrap setup we make use of the acousto-optic deflector to
create a double-well potential. The control of the tunnel junction of this fundamental
system allows us to gain first experiences with multi-well setups. It is a necessary
step towards the implementation of few-site Fermi-Hubbard systems.
For the measurement of the tunneling rate between two wells we prepare two

non-interacting atoms in one of the two wells whereas the other remains empty.
By subsequent lowering of the total trap depth the coherent tunneling process is
initialized. We demonstrate the time evolution by measuring the number of particles
in one of the two wells after different tunneling times. Tunneling between the
two wells is only resonant, when the levels in both wells have the same energy.
Furthermore, the process has to occur in accessible time scales. Both, the energy
difference of the levels and the tunneling rate are directly controllable by the depth
and the separation of the wells.

In this part of the chapter we explain the experimental sequence and the established
tools to control a tunnel junction. In section 5.3.1 the preparation of the initial
non-tunneling configuration and the detection of the atom numbers in one well are
described. In section 5.3.2 we will switch on tunneling between the two wells, fine
tune the system and demonstrate Rabi oscillations between the two wells.
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Figure 5.5: Mean atom numbers per well for different well separations at fixed
total trap depth. Two atoms are prepared in well 1. In its vicinity well 2 is
ramped on being slighly deeper than well 1. We detect the atom number in
both wells respectively as function of the separation. For well separations below
1.9V (about 1.95 µm) a considerable amount of atoms end up in well 2. Above,
the atoms stay in well 1. The total atom number in the system is in agreement
with the initial preparation.

5.3.1 Preparation and detection
Before we can start to investigate tunneling processes we have to deterministically
prepare our system in an initial state. The most convenient possibility is to start
with just one well. Using our usual spilling scheme, we prepare two atoms in the
ground state of the single well (well 1). We ramp on a second well (well 2) within
5ms with about the same depth. The total double-well trap now contains about
460 µW of trapping light.

For measuring the atom number per site we subsequently separate the two wells
by another 2 µm to completely decouple them. While switching off one of the wells
a small gradient of 10G/cm is applied to avoid a transfer of atoms into the other
well. The atoms in the remaining well are transfered into the MicroMOT for atom
number detection as it has been done for the single-well microtrap.
The tunneling rate of atoms between the two wells depends on the overall trap

depth Ptot and on the well separation d. In our initial configuration we want to
prevent the atoms from tunneling from one well to the other. To find parameters
where tunneling is suppressed, we fix the initial trap depth at 460 µW and search for
the optimal well separation d.

The well separation can be adjusted by the radio-frequency input of the AOD, as
introduced in section 4.3.1. By changing one of the input frequencies (see scheme
4.10), the distance between the wells is varied. Figure 5.5 shows the measurement
result of this variation around a distance deduced from the calculations presented in
[Kli12]. For all separations the total atom number was constant. At large distances all
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Figure 5.6: Part of the experimental sequence for observing tunneling between
two wells. The microtrap is ramped on loading atoms from the dipole trap.
With the spilling technique two atoms are prepared in well 1. Then well 2 is
ramped on. After a hold time of 30ms the total trap depth is lowered for a time
ttunnel and the atoms can tunnel. By ramping up to the initial total trap depth
the tunneling is stopped again. For the detection the two wells are separated
in space. Then, well 1 is switched off and the remaining atoms in well 2 are
transfered into the MicroMOT for atom counting.

atoms stay in well 1. When we reduce the separation below 1.8 µm (1.7V difference
in the VCO control voltages) the atoms start to tunnel to well 2. Since well 2 was
slightly deeper than well 1, the mean atom number in well 2 exceeds 50%. For future
measurements we want to start in a system without tunneling. So, we chose an
initial well separation of 2.05V which corresponds to about 2.16 µm.

5.3.2 Observations of tunneling processes
Up to now the prepared systems contain two atoms in well 1. The distance to well 2
is large enough that no tunneling occurs for the chosen trap depth. The next step
is to investigate the tunneling dynamics. To start the tunneling process at fixed
separation we reduce the trap depth by a factor of 6.4. To observe resonant tunneling

61



Chapter 5 Few-fermion systems created with the new microtrap setup

6.0 6.1 6.2 6.3 6.4 6.5 6.6

0.00

0.25

0.50

0.75

1.00

 

M
ea

n 
at

om
 n

um
be

r

Amplitude control of well 2 [V]

a)

64 66 68 70 72 74
0

100

200

300

400

500

well 2

 

 6.2V

C
ou

nt
s [

/1
00

0]

Position [pixel]

well 1

b)

 6.5V

Figure 5.7: Tunneling features as a function of relative well depth. (a) For the
tunneling times 20, 25 and 30ms the population in well 2 has been measured
as a function of the relative well depth. For the plot the results for the different
tunneling times are averaged. Signatures of tunneling are indicated by an atom
number differing from zero and a large standard deviation. Features indicating
tunneling are found at 6.2V and 6.5V. (b) shows the intensity profile of the
trapping light. The double well structure was measured for the values of the
two features. For a setting of 6.5V the wells look equally deep (green, dashed),
whereas for 6.2V well 2 is less deep (blue, solid) than well 1. The lines are a
guide to the eye.

the depth of the two wells have to be equal.
The experimental sequence is illustrated in figure 5.6. Again, we prepare two

atoms in one well. Subsequently, we ramp on the second well within 20ms to a well
depth similar to that of well 1. The reduced ramp speed should prevent heating of
the system. After a hold time of 30ms, the trap depth of the double well is reduced
within 20ms to a total power of 72 µW and the tunneling process can start. After
a certain time ttunnel the evolution is stopped by increasing the trap depth within
another 20ms. Finally, the atom number in well 2 is detected.

To obtain resonant tunneling we have to fine tune the relative well depth. Therefore,
we alter the control value of the amplitude of well 2, see scheme 4.10. As the total
trap power is stabilized, the variation of the amplitude in well 2 directly leads to a
potential tilt δ between the two wells. We measured the atom number in well 2 for
three different ttunnel of 20, 25 and 30ms as a function of the tilt δ. The averaged
results for the different ttunnel are shown in figure 5.7 a. We observe two broad features
at control values of 6.2V and 6.5V where the atom number in well 2 differs from
zero and the standard deviation of the mean atom number is large. We assumed this
to be a signature of tunneling in the system.
Profiles of the intensity distribution at these control values are shown in figure

5.7 b. For a mixer value of 6.2V the two wells are not of equal depth. As well 2
is less deep than well 1, the feature can not be explained by a tunneling process
into an excited axial level of well 2. To understand this structure further detailed
measurements would be necessary.
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Figure 5.8: Rabi oscillations for two different relative well depths. Starting with
two atoms in well 1 the atom number in well 2 is measured as a function of the
tunneling time ttunnel. For the fit we assumed a sinusoidal modulation combined
with an exponential decay. The blue data is obtained for a mixer value of
6.50V. Taking into account the 90% recapture efficiency of the MicroMOT, this
oscillation with a fitted (blue, solid line) amplitude of 0.92 can be attributed to
resonant tunneling. The Rabi frequency is Ω = 2π × 85.5(4)Hz and the decay
time is 180(74)ms. At a mixer value of 6.55V we observe a reduced oscillation
amplitude of only 0.32 and a frequency of Ωeff = 2π × 96.9(11)Hz. Also the
decay time decreased to 97(59)ms.

For a value of 6.5V the depths of both wells are nearly equal. We measured the atom
number in well 2 for tunneling times between 0 and 50ms and observed oscillations as
shown in figure 5.8. For a mixer value of 6.50V we see Rabi oscillations (blue data) of
the atoms between the two wells with a relative amplitude of 0.92. As our recapture
efficiency into the MicroMOT is only about 90% we can assume that the tunneling
coupling is resonant. We fit the measured atom number with an exponentially
damped sine-square function and obtain a Rabi frequency of Ω = 2π × 85.5(4)Hz 2.
The decay time due to decoherence is about 180(74)ms. At a second relative well
depth of 6.55V the system is slightly tilted and we measured Rabi oscillations with a
smaller amplitude of 0.32 and larger frequency of Ωeff =

√
Ω2 + ∆2 = 2π×96.9(11)Hz

(green data). In comparison with the resonant Rabi frequency, these values are not
consistent with the Rabi formula (2.17).
The measured amplitude of the non-resonant oscillation is much lower than the

expected values of Ω2/Ω2
eff. One possible explanation is a change in the tunneling rate

Ω to smaller values when the potential is tilted, but further investigations thereon
are required.
Nevertheless, this first oscillation measurement confirmed that a high level of

control is possible with our new setup. A detailed characterization of the Rabi

2Despite the restriction to only one dimension, the tunneling calculation presented in section 2.3
yields a tunneling rate that is only smaller by a factor of 10 for our experimental parameters of
the double-well potential.
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Chapter 5 Few-fermion systems created with the new microtrap setup

oscillations Ωeff as a function of the relative depth δ allows to gain further insight
into the properties and stabilities of our system. It provides a sensitive tool to set
the depths of two wells to equal heights.

After the investigation of resonant tunneling at a certain separation d and a total
trap depth Ptot, a future step will be to vary the two parameters and thus alter the
time scale of the tunneling process. A full characterization of the tunneling junction
J(d, Ptot) will give us the opportunity to control the tunneling time scales in later
experiments. Together with the tunability of the inter-particle interaction strength,
we want to observe ordering phenomena such as the anti-ferromagnetic phase.
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Chapter 6

Conclusion and Outlook

During the past two years, our group has used an optical microtrap created by the
focus of a single Gaussian laser beam to deterministically prepare and investigate
few-fermion systems [Ser11b, Zü12a, Wen13]. In the course of this thesis we have
developed, tested and commissioned a new experimental setup which allows to
perform such experiments in a tunable potential.
For this setup we have used a high-resolution objective, which was designed by

F. Serwane [Ser11a], to decrease the focus size of the microtrap. We characterized the
objective by measuring the transmitted wavefront error and the achievable resolution
in a test setup and found both to be within the specifications. We also included a
two-axis acousto-optic deflector into the new setup that allows the creation of multiple
potential wells by deflecting the trapping beam into different orders. Since direct
diagnostics of the focus created by the objective are not possible in the experiment
we developed an alignment procedure to integrate the new microtrap setup into the
existing experiment.

After overlapping the new microtrap with our optical dipole trap and re-establishing
the deterministic preparation of few-fermion systems we found the preparation fidelity
to be much less sensitive to the depth of the microtrap potential. We attribute this
to the smaller size of the trap. We measured the trap frequencies in the different
axies of the trap and infered a focus size of 1.17(6) µm which indicates that the new
objective works as expected.

As a first test of our ability to tune the potential shape we used the acousto-optic
deflector to create a double-well potential. For this we developed a radio-frequency
setup with an amplitude stability of the generated radio-frequency signals below
1%�. In this tunable double-well potential we prepared two non-interacting atoms in
one of the wells and observed resonant tunneling to the second well. By adjusting
the relative height of the two wells we could create high-contrast oscillations with
coherence times of several hundred milliseconds.
Starting from this well controlled and stable system the next step is the deter-

ministic atom number preparation of few-fermion systems in our symmetric double
well potential. Here one would start with the simplest possible system, which is two
distinguishable fermions in the symmetric ground state of the double-well potential.
Our planned preparation scheme for this state is to start from two separate wells,
each containing two atoms in the ground state. If we then combine the potential
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into a single double-well, the atoms will occupy the symmetric ground state and the
anti-symmetric first excited state in the double-well potential. As these states have
an energy separation of 2t we can then spill the first excited state by applying a
magnetic field gradient. Using this scheme we should be able to reliably prepare two
atoms in the lowest state of the double well, which corresponds to a Fermi Hubbard
system at half filling.
In this system we could then investigate the two-particle-limit of the transition

from a metallic to an insulating state by measuring the occupation number of the
individual wells. Once we have observed the Mott-insulating regime we can study
superexchange correlations in our isolated two-site potential as already demonstrated
for bosons [Tro08] and for fermions [Gre13] in double-well superlattices. With the help
of the acousto-optic deflector we can then go a step further and extend our system to
more than two wells. At low enough entropy these systems should exhibit spin order
which we can directly probe by spin-selective measurement of the populations in the
different wells. By tuning the Hubbard parameters we should be able to investigate
the phase transition to the finite-size anti-ferromagnetic state and compare it with
theory predictions [Gor12].

Instead of a chain of potential wells the two-axis acousto-optic deflector also allows
for the creation of two-dimensional multiple-well arrays. The simplest configuration
is a two-by-two array, shown in [Kli12] which can be considered as an elementary
plaquette of a two-dimensional lattice with independent tunability of the tunneling
rates in both directions. The AOD may allow the creation of finite 2D lattices with
up to 4× 4 sites. As the potential depths are indiviually controllable we can also
simulate lattice defects affecting the physics in our finite lattice system.

The creation of time-averaged potentials is a completely different technique possible
with the AOD. By successively creating single wells at different positions with a
repetition rate much faster than the trap frequencies the generation of two-dimensional
lattice potentials with arbitrary geometries, e. g. triangular plaquettes should be
possible. Furthermore, a continuous modulation allows the deformation of a single
well. By exploiting this, we should be able to create a two-dimensional trap and may
investigate its shell structure.
All the mentioned examples illustrate the large flexibility of our new setup. The

high degree of stability and control we achieved in our first experiments with the
double-well potential combined with our improved few-particle preparation makes us
confident that we will be able to use this setup to do lots of interesting physics in
the near future.
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Appendix A

Alignment instruction for the
multiwell breadboard

The focus created by the high-resolution objective is sensitive to wavefront errors
in the optical system. Thus, after the adjustment of the board to the G-tower a
proper alignment of the optical setup on the breadboard is necessary. The AOD, the
telescope and the objective itself are the most critical elements to align.

For the AOD a high deflection efficiency in the frequency center is necessary. The
telescope can create an astigmatism to the beam if it traverses one of the lenses
not centrally or with an angle. The objective has to be adjusted with respect to
the vacuum window. For this we align first the incident beam with respect to the
window interferometrically. Then we install the objective and align it with respect
to the beam.

1.Alignment of the acousto-optic deflector

With no stabilization board in between the Mephisto board and the AFM board
about 116mW of 1064-nm light exit the fiber. For horizontal polarization being
maximally transmitted through the cube 106mW are measured behind the pelecal.
Check first with the IR-viewer whether the beam is not clipped when it crosses

the AOD crystal. A total power of about 98mW should be left behind the crystal.
For the diffraction optimization of the AOD we use the camera (PointGrey) in

the diagnostic arm by comparing the power in the four generated spots. Then,
block all but the -1-1 order (say 11-order) and optimize with the power meter
while checking that you hit the crystal properly. The coupling efficiency should be
approximately 8-10% for AH = 32.75dBm at f1 = 37.89MHz and AV = 32.75dBm
at f2 = 32.02MHz.
The beam should hit the 1/2” mirror behind the small lens in the center. Then

also the lens with f = 18mm is traversed centrically. If this is not the case a coarse
alignment with the AOD together with the mirror in front has to be done.
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Figure A.1: Optical setup of the new microtrap

2. Telescope
With the help of the 1/2 mirror and the 2” mirror we adjust position and angle of
the divergent beam on the 2” lens. The angle can be checked with a retroreflector
screwed on the lens mount reflecting back through the AOD and the aperture. For
means of collimation and control over the wave fronts, a shearing interferometer is
set at the later objective position. Collimation is achieved by altering the position of
the 2” lens that is fixed on a rail.

The wavefront curvature has to be small in both the horizonal and vertical axis of
the beam. It can be optimized by the alignment of the telescope. If the beam hits
the first mirror in the telescope in the center and the AOD diffraction efficiency is
optimized one can slightly scan the beam position on the small lens via the mirror
in front of the AOD and re-align the telescope as described before. If the beam has
significant wavefront errors it is necessary to alter the relative positions of incident
beam and AOD more drastically.

3. Interferometer
The Michelson interferometer behind the telescope is necessary to align the objective.
Only if the reference arm is aligned such that the beam hits the reference mirror
perpendicularly, the objective can be aligned perpendicularly to the beam. To set
the position of the reference mirror we first install a second mirror at the position
of the later objective. We align it such that light of the 00-order is reflected back
through all the optics on the board and fed through the fiber. With this we made
shure that the mirror at the objective position is hit perpendicularly by the 00-order.
For the rest of the procedure we use again the 11-order. The reference mirror in

the second branch of the interferometer has to be adjusted. Therefore we interfer the
beam reflected directly at the beam sampler with the part going straight through
it, which is then reflected at the objective mirror, at the beam sampler and at the
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reference mirror and traverses the beam sampler. Both beams should overlap and
interfere on the WinCam in the diagnostic branch. The angle error due to the two
different diffraction orders that we used is approximately 0.5mrad

4.Green laser
For the alignment of the expanded beam with respect to the antireflection-coated
vacuum window we use a green beam at 532 nm that we overlap with the IR-beam.
It faciliate the alignment to the center of the window and the angle as the window is
anti-reflection coated at 1064 nm and the reflected part of the beam is barely visible.

The overlap of the green laser beam with the IR-beam is done on two cameras, the
Point Grey on which the foci have to be at the same position, and a beam profiler
camera (Thorlabs) that we install at the position of the objective. As the chip of
the latter is fairly large, we are able to see the center of the IR-beam and overlap it
with the center of the green beam. The overlap on the PointGrey is aligned with the
1”-mirror, the overlap on the beam profiler is done with the fiber outcoupler of the
green laser.

5.Vacuum window
After that the trap beam has to be aligned with respect to the vacuum window. For
this the green beam is aligned onto the vacuum window in position and angle via
the two large mirrors behind the NBSC. Then one has to search for interference of
the reflected IR-beam on the WinCam. The contrast is very small. As soon as little
fringes appear at the edge of the beam, one can improve the signal by subtracting
the light beam and normalizing the difference picture with the help of the WinCam
software.

6.Objective
Before installing the objective onto the breadboard the mount is align such that
the objective sits perpendicular in the center. The z-axis screw has to sit at the
outer edge of the alignment way such that we have the maximum travel to screw the
objective down into the reentrant viewport. We have to find the best position of the
objective on the board and the objective case in the mount such that the objective
sits as close as possible to the vacuum chamber but we can still access the alignment
screws of the 5-axis mount. We have to tighten the in the mount accordingly with
the aluminium ring. Then the objective can be installed on the breadboard. To
adjust the distance between the vacuum window and the objective, we screw the
objective down until it touches a 0.5mm- thick plastic ring. Starting at this reference
position we screw it up by 1.5mm.
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The angular alignment of the objective is done with a 2” dielectric mirror that
is layed onto the objective with the coated side downwards. We align it with the
interference of the backreflection on the WinCam. The exact position of the objective
has to be aligned with respect to the dipole trap. A detailed description is given in
section 4.4.2.
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Appendix B

Deterministic preparation after
improved recapture efficiency into
the MicroMOT
After the measurements presented in section 5 of this thesis, the recapture of the
atoms from the microtrap into the MicroMOT has been improved by moving the
microtrap closer to the MicroMOT position. Then, the system was prepared as
presented before. A plot of the mean atom number over the trap depth Vspill (cf.
figure B.1 a) shows clear steps of two and four atoms with broad plateau regions.
Between four and ten atoms, the steps were not clearly visible.
We measured the preparation fidelity of two atoms in the microtrap by choosing

a trap depth of 1.58V. The fluorescence light imaged on the camera (Andor) is
integrated over the MOT region. The results are binned into a histogram, see figure
B.1 b. In 95(1)% of the experimental realizations, we prepared exactly two atoms.
The remaining 5% were realizations of one or zero atoms, but we never obtained
more than the wished atom number. From this we conclude that our preparation
fidelity is not limited by the stability of the magnetic field gradient or the trap depth.
The mispreparations may be caused by a finite detection efficiency or by holes in the
Fermi distribution of our prepared sample.
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Figure B.1: Preparation fidelity after an improved recapture into the MicroMOT.
(a) shows the mean atom number as a function of the trap depth. (b) Histogram
of preparation of two atoms.
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Appendix C

Trap frequencies in radial direction
By modulating the trap power with a frequency between 60 kHz and 80 kHz we
measure the energy difference from the ground state level to the second excited
level in the radial direction. We see features at 61(1) kHz and 69(1) kHz which we
associate with resonances for parametric heating into the second excited states. Their
position and separation are in agreement with the measured trap frequencies in radial
direction, shown in figure 5.4.
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Figure C.1: Parametric heating into the second excited radial level. We observe
resonance features at 61(1) kHz and 69(1) kHz which we associate with the
population transfer from the ground state level into the second excited radial
levels.
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