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An apparatus for few-fermion systems in multiple well potentials:

In this thesis, an apparatus which will create few-fermion systems in multiple well
potentials is presented. It will be integrated in an existing few-fermion experiment.
This experiment can prepare few-fermion systems of up to ten ultracold 6Li atoms
deterministically in an optical microtrap. The microtrap consists of the focus of a
laser beam (1064nm wavelength) with a waist of 1.8µm. In the the course of this
thesis a new microtrap setup based on a custom-built, high numerical aperture
(NA = 0.55) objective was planned, constructed and tested. With this setup
microtraps with sub-micron waists can be created, which will improve the control
of the few-fermion systems. Additionally, an acousto-optic deflector (AOD) was
characterized and integrated into the setup to allow the creation of multiple well
potentials. An interferometric alignment procedure for the setup ensures the
quality of the microtraps by minimizing the wavefront errors of the incoming
laser beam. This is necessary since a visual diagnosis of the microtraps in the
vacuum chamber of the experiment is impossible. In preparation of upcoming
experiments, the expected physical parameters of viable microtrap arrays have
been calculated numerically.

Ein Apparat für Systeme weniger Fermionen in mehreren Poten-
tialtöpfen:

Diese Arbeit stellt einen Apparat vor, der Systeme mit wenigen Fermionen in Fal-
lenpotentialen bestehend aus mehreren Potentialtöpfen erzeugen soll. Er wird ein
bestehendes Experiment erweitern, mit dem Systeme aus bis zu zehn ultrakalten
6Li Atomen in einer optischen Mikrofalle deterministisch präpariert werden kön-
nen. Diese Mikrofalle besteht aus dem Fokus eines Laserstrahls (1064nm Wellen-
länge) mit einer Strahltaille von 1.8µm. Im Verlauf dieser Arbeit wurde ein neuer
Mikrofallenaufbau mit einem spezialangefertigten Objektiv hoher numerischer
Apertur (NA = 0.55) entworfen, gebaut und getestet. Damit ist es möglich,
Mikrofallen mit einer Taille von unter einem Mikrometer zu erzeugen, was die
Kontrolle der wenig-Fermion Systeme verbessert. Außerdem wurde ein akusto-
optischer Deflektor (AOD) charakterisiert und eingebaut, wodurch die Erzeugung
von Potentialen mit mehreren Töpfen ermöglicht wird. Ein interferometrisches
Verfahren wurde zur Justage des Aufbaus entwickelt. Es gewährleistet die Qual-
ität der Mikrofallen, indem die Wellenfrontfehler des einlaufenden Laserstrahles
minimiert werden. Dieses Verfahren ist notwendig, da eine visuelle Überprüfung
der Mikrofallen in der Vakuumkammer unmöglich ist. Im Hinblick auf kommende
Experimente wurden die zu erwartenden physikalischen Parameter der möglichen
Mikrofallenkonfigurationen numerisch berechnet.
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1 Introduction

Periodic quantum systems play a vital role both for fundamental physics and for
the physics of our daily lives. From the models for such systems stem, e.g., the
understanding of conducting and insulating materials and the theory of quantum
magnetism. Both examples belong to the field of solid state physics which is based
on the behavior of quantum (quasi-) particles in the periodic crystal structure of a
solid.
Due to the quantum nature of such systems, their complexity increases expo-

nentially with their size [Fey82]. This makes it virtually impossible for theoretical
studies to perform exact calculations on conventional computers. Hence one needs
to treat periodic quantum systems experimentally. This can be done with real solids,
i.e., crystal samples. However, the properties of solids such as the lattice configu-
ration or the interparticle interaction cannot be varied at will making real solids
difficult to compare with fundamental theoretical models.
One way of overcoming this problem is to study periodic quantum systems with

ultracold atoms in optical lattices. The advances in atom cooling resulted in the
creation of an atomic Bose-Einstein condensate (BEC) in the 1990s [Dav95]. This
showed that for ultracold atoms, quantum mechanical phenomena can prevail over
thermal effects. Once confined in an optical lattice, the ultracold atoms form a peri-
odic quantum system (e.g. [Gre02]). Usually the optical lattices are implemented as
standing waves created by overlapping laser beams. The advantage of these systems
is their flexibility: the interparticle interaction, the particle density, the lattice depth
and the lattice geometry can be varied over a wide range. Thanks to the simplicity
of the systems, there are fewer side effects obscuring the phenomena predicted by
theoretical models.
One of the challenges for studying quantum systems in optical potentials is the

creation of low-entropy systems. Ordering effects as predicted by the Hubbard model
cannot be observed if there is too much entropy in the system, e.g. due to thermal
effects. For example, the anti-ferromagnetic phase of the Fermi-Hubbard model
requires the entropy per particle to be below s / 0.5 ln 2 kB ≈ 0.35 kB [McK11].
Currently it is not possible to cool the atoms in a lattice to the required temperatures
with conventional cooling methods [Jör10].
Our experiment allows us to create low-entropy systems with few particles, albeit

in a single microtrap and not in a periodic potential. We prepare our system in
such a way that the lowest energy levels are occupied with a high probability. The
major part of the entropy of the system is then contained in the higher energetic
part which is discarded. The resulting system contains up to ten particles in the
ground state, which leads to a vanishing entropy. In order to combine low-entropy
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1 Introduction

preparation and optical lattices, we are expanding our existing experiment with a
setup which generates an optical lattice as an array of microtraps.
This expansion will be the focus of my thesis, as well as the physics and exper-

imental parameters we expect of it. The next chapter will present the theory of
ultracold atoms and the operation principle of our existing experiment. Chapter 3
elaborates the theory and predictions of the Hubbard model, as well as the param-
eter range we will be able to cover. The next two chapters summarize the setup
which generates the potential and the testing of its critical components. The last
chapter concludes with the measurements we will perform with the new setup and
briefly presents modifications which will allow an even wider range of experiments.
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2 The existing experiment

2.1 Physics of ultracold atoms

The purpose of experiments with ultracold quantum gases is to study a variety of
quantum systems. As it is possible to manipulate the HamiltonianH = T+Vint+Vext

(where T is the kinetic energy) by, e.g., controlling the interaction potential Vint or
the external trapping potential Vext, a variety of quantum systems can be realized
[Blo08]. This chapter summarizes the theoretical treatment of ultracold atoms and
gives an overview of our experiment.

2.1.1 Scattering and Feshbach resonances - manipulating the
interaction potential

An interaction between two particles with the same mass m and the coordinates r1

and r2 can be described by the stationary Schrödinger equation

Hψ(r1, r2) = Eψ(r1, r2) (2.1)

where ψ(r1, r2) is the total wavefunction and the Hamiltonian takes the form

H = − ~2

2m
∇2

1 −
~2

2m
∇2

2 + Vext(r1) + Vext(r2) + Vint(r1 − r2). (2.2)

As our interaction has a very short range r0 (for Van-der-Waals forces it is on the
order of 1 Å) compared to the sizes of typical external potentials (on the order of
1 µm), we can assume that the external potential remains constant for interaction
processes. We can transform our coordinates into the relative coordinate system
with the center of mass coordinate R = (r1 + r2)/2, the relative coordinate r =
r1 − r2 and the reduced mass µ = m/2. For our problem, we only need to take the
relative coordinate into account. Both assumptions allow us to write the stationary
Schrödinger equation as(

− ~2

2m
∇2

r + Vint(r)

)
ψr(r) = Erψr(r). (2.3)

An ansatz for the wavefunction far away from the scattering potential would be that
it consists of an incoming plane wave and an outgoing spherical wave

ψr(r) ∝ eik·r + f(k′,k)
eikr

r
. (2.4)
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2 The existing experiment

The scattering amplitude f is a function of the momentum of the incoming plane
wave and outgoing particle, explicitly

f(k′,k) = − µ

2π~2

∫
dr′ e−ik

′·r′Vint(r
′)ψr(r

′). (2.5)

If we can find a simple expression for f independently of this equation, we can use
it to derive a simple, effective interaction potential.
First, we make use of the symmetry of the problem. We assume that particles

with low momenta and consequently large de Broglie wavelengths cannot resolve
the details of our interaction potential and we conclude that we therefore can use a
spherically symmetric interaction potential Vint(r). The scattered wavefunction will
be axially symmetric with respect to the incident wavevector k. We can then write
our scattered wavefunction with the partial wave expansion (see, e.g., [Mes65])

ψr(r) =
∞∑
l=0

Pl(cos θ)Rk,l(r) (2.6)

using the Legendre polynomials Pl as a function of the angle between the incident and
scattered momenta θ. The radial functions can be solved with the radial Schrödinger
equation, resulting in

Rk,l(r) =
uk,l(r)

r
∝ 1

r
sin
(
r − lπ

2
+ δl

)
. (2.7)

If we use this in the previous equation and compare it to the partial wave expansion
of equation (2.4), we can identify

f(k, θ) =
1

2ik

∞∑
l=0

(2l + 1)
(
e2iδl − 1

)
Pl(cos θ). (2.8)

We can also see that each of the components l of the scattered wave only differs by
a phase shift δl from the components of partial wave expansion of the incident plane
wave. So, the effect of a scattering potential on a plane wave is to shift the phase
of each of its components separately.
We can further simplify this expression if we take into account that ultracold atoms

have very low energies and small wavevectors k. Since the phase shift behaves as
δl ∝ k2l+1 in this regime, we can neglect the terms for l > 0, as (exp(2iδl)− 1) ≈ 0
when k → 0. Retaining only the so-called s-wave term, the scattering amplitude
then looks like

f0 =
1

2ik

(
e2iδ0 − 1

)
=

1

k cot δ0 − ik
. (2.9)

Here we can approximate k cot δ0 = k/ tan δ0

k�1/r0≈ −1/a with the s-wave scattering
length a. The scattering amplitude can now be expressed as
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2.1 Physics of ultracold atoms

f(k) = − a

1 + ika
(2.10)

and for small values of k |a|

f(k) = −a. (2.11)

In this case, the entire physics of the scattering is contained in only one parameter.
Now we can solve our initial equation for the scattering amplitude (2.5)

f(k′,k) = − µ

2π~2

∫
dr′ e−ik

′·r′Vint(r
′)ψr(r

′)

in such a way that it matches our previous result (2.11) in the same limits. We do
this in the first Born approximation, where the total wavefunction is ψr(r′) = e−ik·r

′ ,
leading to

f(k′,k) = − µ

2π~2

∫
dr′ e−i(k

′−k)·r′Vint(r
′). (2.12)

Here, the scattering amplitude is just the Fourier transform of the potential. The
simplest potential to yield a constant scattering amplitude is a delta-interaction
potential

Vint(r1, r2) = g δ(r1 − r2), (2.13)

if we transform out of the center-of-mass system again. Matching this potential to
the scattering amplitude f = −a fixes its coupling strength to

g =
4π~2

m
a. (2.14)

If we want to tune our interactions, we have to tune our scattering length a =
− limk�1/r0 tan(δ0)/k. An intuitive way to do this would be varying the depth of our
potential g (figure 2.1). For zero potential depth, there is no phase shift between
the scattered wavefunction and the incident wavefunction. When one increases the
potential depth, the scattered wavefunction in the potential gets an increased oscil-
lation frequency and the part outside has to match it at the edge of the potential.
This leads to a positive phase shift and a negative scattering length for small depths.
The scattering length can be visualized as the intercept with the abcissa of the lin-
early extrapolated wavefunction at the edge. When the potential depth is increased,
a first bound state appears. The phase shift is now π/2 and the scattering length
diverges |a| → ∞. For even deeper potentials, the phase shift increases further and
the scattering length becomes positive.
Directly manipulating the depth of the interaction potential in order to tune a

scattering resonance is not possible in the experiment. Instead, we make use of a
Feshbach resonance. Our two interacting particles have scattering channels with
different energies depending on their internal quantum numbers. For example, the
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u(r)

r

u(r)

r

u(r)

r

u(r)

rE0

r

δ < �/2

δ = �/2

δ > �/2

Figure 2.1: Radial wavefunctions u(r) = r R(r) for zero potential depth (blue) and
for non-zero potential depth (red). The scattered wavefunction acquires
a phase shift δ. The scattering length is the intercept of the dashed line
with the abcissa. The potential depth of the top left graph is zero. The
top right potential contains no bound states. The bottom left (right)
potential depth equals (is larger than) the energy of its bound state
(black dotted line).
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2.1 Physics of ultracold atoms

Figure 2.2: Principle of a Feshbach resonance for two particles. The interaction is
resonant when the energy E of the incoming particles matches the bound
state energy of the closed channel. From [Chi10].

spins can be opposite (singlet configuration) or aligned (triplet configuration). The
latter has a higher energy and cannot be reached directly by two incoming particles
(hence it is a closed channel). These configurations have different magnetic moments
which results in a shift of the relative energy

∆E = ∆µB (2.15)

when a magnetic field B is applied. By tuning the magnetic field, ∆E can be tuned
and bound states of the closed channel can become resonant with the energy of
the incoming particles (figure 2.2). Even though they cannot remain in the closed
channel, they can couple to it. Therefore we can manipulate the scattering length
using this resonance as a function of B [Chi10]:

a = abg

(
1− ∆B

B −B0

)
(2.16)

where abg is the background scattering length, B0 is the magnetic field where the
resonance occurs and ∆B is the width of the resonance.
Summarizing, this section shows that the interaction potential of a system con-

sisting of ultracold atoms can be described by a contact interaction Vint(r1, r2) =
4π~2
m
a δ(r1 − r2). The strength of the interaction can be controlled with a magnetic

offset field via a Feshbach resonance, which allows us to tune the scattering length a.
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2 The existing experiment

2.1.2 Optical dipole trapping - manipulating the external
potential

An external electric field E will induce an electric dipole moment p = α E on a
neutral atom. α is the complex polarizability and depends on the frequency of the
external electric field. The interaction between the induced dipole moment and the
external electric field gives the atom a potential energy

Udip = −1/2 〈p E〉 ∝ −Re (α) |E|2 (2.17)

which is proportional to the intensity I ∝ |E|2 of the field. Using an approximation
of α for the classical oscillator model (which applies for large detunings from the
atomic transition) the potential energy takes the form [Gri00]

Udip = −3πc2

2ω3
0

(
γ

ω0 − ω
+

γ

ω0 + ω

)
I(r) (2.18)

where c is the speed of light, ω0 is the frequency of the atomic transition and γ is its
spontaneous decay width. If the external field is red detuned (ω < ω0), the potential
is deepest for maximum intensity.
For a focused Gaussian beam with laser power P propagating in z-direction, the

intensity is given as [Sal91]

I(r, z) =
2P

πw2(z)
exp

(
−2

r2

w2(z)

)
. (2.19)

r is the radial coordinate and w(z) = w0

√
1 +

(
z
zR

)2

the 1/e2-beam radius. The

characteristic parameters of the beam are the minimum beam radius w0 called beam
waist and the Rayleigh length zR = πw2

0/λ where the peak intensity has dropped
by half compared to the peak intensity in the focal plane.

2.2 Experimental setup and sequence

The atomic species used in the existing experiment is fermionic Lithium 6Li. Its
optical transition at 671 nm wavelength can be used for laser cooling. The nuclear
spin I = 1 and electronic spin S = 1/2 couple to F = I + S for weak magnetic
fields. In the Paschen-Back regime for magnetic fields above 100 Gauss the energy
levels are grouped depending on the magnetic quantum number mS of the electronic
spin as shown in Fig. 2.3. The states |1〉, |2〉 and |3〉 are used in the experiment as
they are stable against dipolar relaxation. Atoms in the states |4〉, |5〉 and |6〉 would
relax to the energetically lower states of the mS = −1/2 manifold and would be lost
from the trap as a consequence. The interactions between the |1〉, |2〉 and |3〉 states
are governed by Feshbach resonances. For 6Li the width of the Feshbach resonance
is ∆B ≈ 300 Gauss which is two orders of magnitude more than for other atoms

8



2.2 Experimental setup and sequence

Figure 2.3: Zeeman hyperfine levels of the ground state of 6Li. The magnetic mo-
ments can be extracted from the slopes of the curves. From [Ser11a].

[Chi10]. This allows a precise and stable control of the scattering length through
the magnetic field.
The vacuum chamber is shown in Fig 2.4. A hot lithium gas is created in the

lithium oven. It is slowed down in a Zeeman slower before it reaches the main
vacuum chamber (octagon). The Zeeman slower makes use of laser cooling: When
an atom absorbs a photon from a laser beam its momentum is changed by ∆p = ~k
where k is the wavevector of the photon in direction of the laser beam. The excited
atom emits a photon by spontaneous emission. Because this happens isotropically,
the average force on the atom is

〈F 〉 = ~kγp. (2.20)

The scattering rate

γp =
s0γ/2

1 + s0 + [2 (δ + ωD) /γ]2
(2.21)

depends on the intensity of the light relative to the saturation intensity I/IS = s0,
the detuning of the laser frequency from the atomic transition δ = ωL− ωA and the
Doppler shift due to the motion of the atoms ωD = −k · v [Met99]. If the laser is
tuned to match the initial Doppler shift , the scattering rate will decrease the more
the atoms have been decelerated. In order to maintain a high scattering rate (i.e. a
high deceleration), the atomic transition frequency ωA is shifted using the Zeeman
effect. The exact specifications of the coils of the Zeeman slower can be found in
[Ser07].

The atoms which have been slowed down to below 10 m/s are captured in a
magneto-optical trap (MOT). It is composed of counterpropagating laser beams in
all three spatial directions which are detuned from the atomic transition frequency

9



2 The existing experiment

7

7 Position of the objective

Figure 2.4: Vacuum system. The coils for the Zeeman slower, MOT magnetic field
and Feshbach magnetic field are shown in red. From [Ser07].

and a pair of coils in anti-Helmholtz configuration. The detuning of the lasers pro-
vides confinement in velocity space and the magnetic field gradient provides confine-
ment in position space (a more detailed explanation can be found in [Met99]). Due
to the velocity dependence of the laser force the motion of lithium atoms is damped
and they are cooled to approximately 500 µK just above the Doppler temperature
TD = ~γ

2kB
= 140 µK.

In the next step the atoms are transferred to an optical dipole trap generated
by two far red-detuned crossed laser beams (λ = 1070 nm, waist w0 = 40 µm).
The atoms are cooled evaporatively by reducing the depth of the trap, i.e. decreas-
ing the intensity of the laser beams. This cooling scheme requires that the atoms
thermalize via collisions during the process. Since there is no interaction between
identical fermions, we use a balanced mixture of atoms in the |1〉 and |2〉 states.
The interaction strength is controlled with a magnetic offset field near the Feshbach
resonance. To prevent the formation of bound molecular states, the last part of the
evaporation is performed at negative scattering lengths. The final sample consists
of about 7.5 104 atoms per state at T/TF ≈ 0.28. In the next stage, a fraction of
these atoms is transferred to a smaller dipole trap — the microtrap. A detailed
description of the evaporation process can be found in [Lom11].

10
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Figure 2.5: Intensity profile of the microtrap in the z− r-plane for typical operating
parameters (240 µW laser power, waist w0 = 1.8 µm).

2.3 The microtrap

2.3.1 Creating a few-fermion system

A microtrap is a small dipole trap created by a single, strongly focused beam. The
radial confinement of the atoms is given by the Gaussian beam profile, similar to
the dipole trap of the previous section. The axial confinement is provided by the
decrease of the axial intensity at the scale of the Rayleigh range as can been seen from
equation (2.19). The intensity profile of a typical microtrap is shown in figure 2.5.
Such a microtrap contains approximately 100 energy levels which each can be filled
with one particle per spin state if the temperature T of the fermi gas is low enough
(high degeneracy). If one now can control the number of energy levels, one controls
the number of trapped atoms at the same time.
The starting point of our preparation scheme is to overlap the microtrap and

the large dipole trap reservoir without raising the temperature T in the reservoir.
Now, the combined Fermi energy is EF = EF,res + EF,mt (res and mt standing for
reservoir and microtrap respectively) instead of EF,res. One can see from the Fermi
distribution of the occupation probability of a state with a low energy E

P (E) =
1

e(E−µ)/kBT + 1
(2.22)

that for higher EF this state is more likely to be occupied (fig. 2.6). For low T/TF ,
we can assume that µ ≈ EF . For the typical parameters given in figure 2.6 the
occupation probability at the lowest energy level E0 = ~ω ≈ h · 10 kHz is P (E0) >
0.9999.
Once the large reservoir is turned off, the microtrap contains approximately 100

levels. Each of it is filled with one atom per state with high fidelity. We can acquire
the desired number of atoms by spilling atoms out of the microtrap by applying
a magnetic field gradient ∇B for a time tspill along the direction of the microtrap
laser beam. This gradient exerts a force F = ∇ (µ ·B) on the atoms which leads
to a combined axial potential of

V (z) = V0

(
1− 1

1 + (z/zR)2

)
− µB

∂B

∂z
z. (2.23)

11



2 The existing experiment

0 1 2 3 4 5

E

kB

ΜK0.0

0.2

0.4

0.6

0.8

1.0
P

Figure 2.6: Occupation probability P (E) from equation (2.22) with TF = TF,res =
0.5 µK (blue) and TF = TF,res + TF,mt = 4 µK (purple) at T = 0.25 µK.

The potential depth V0 at the center of the trap (r, z) = 0 can be calculated from
equations (2.18) and (2.19).
To deterministically prepare a system where only the N lowest energy levels are

occupied, one has to ensure that the atoms on those levels have a long tunneling
time: τi � tspill, i = 0 . . . N − 1. The higher levels have to be emptied with a
high probability. This can be achieved if there is no bound state anymore or if the
tunneling time τN � tspill.
The tunneling times τ can be calculated for our potential with the WKB (Wentzel-

Kramers-Brillouin) method (explained in detail in, e.g., [Mer98]). The wavefunction
for slowly varying potentials should be similar to a linear combination of plane waves
and is given by

ψ(z) =
∑
±

C ′±√
p(z)

e±i
∫ z dz′p(z′)/~ (2.24)

where p(z) =
√

2m (E − V (z)) is the momentum of the atom and C ′± are coefficients
which have to be determined from boundary conditions. Choosing the classical turn-
ing points z1 and z2 of a bound state as boundary condition, one obtains quantized
energy levels En which obey

1

~

∫ z2

z1

dz
√

2m (En − V (z)) = π (n+ 1/2) . (2.25)

Using this formula and the potential along the beam axis ∝ I(0, z) from equa-
tion (2.23), one can see that a smaller waist w0 means a larger spacing between the
energy levels. Similarly it is possible to calculate the waist and the laser power in
the trap by fitting measured energy levels with formula given above.
For E < V , p becomes imaginary and the wavefunction decays exponentially. The

tunneling transmission probability is

|T (E)|2 = exp

(
−2

∫ z2

z1

dz p(z)/~
)
. (2.26)
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2.3 The microtrap

The tunneling time depends on the transmission probability and on the rate at which
the atom hits the barrier ν(E) = E/h as

τ(E) =
1

ν(E) |T (E)|2
. (2.27)

Conversely, a measurement of the tunneling time τ can be used to calculate the
magnetic field gradient. The probability to find atoms on a level with energy Ei
after a spilling duration tspill is

P (Ei) = e−tspill/τ(Ei). (2.28)

With these methods, we can prepare systems with 2 atoms in the ground state
with a fidelity of 96(1)% and systems of 8 atoms in the ground state with 92(2)%
fidelity [Ser11b].

2.3.2 The current objective

In order to spill the microtrap with a high level of control, one needs a laser with
a stable intensity (as discussed in detail in section 5.2) and a large level spacing in
the microtrap, i.e. a small waist. For this purpose, a focusing setup and a special
objective are being used (fig 2.7, [Ser11a]). The objective was designed to be as
simple as possible: An aspheric lens (Thorlabs AL5040, f = 40 mm) creates the
focus inside the vacuum chamber. It has a diffraction limited numerical aperture of
NA = 0.35 at λ = 1064 nm. To compensate the effects of the 6 mm thick vacuum
viewport, a positive meniscus lens (f = 800 mm) was added, increasing the NA to
0.44. As the beam used in the experiment has a diameter of d = 30 mm, the NA is
reduced to 0.37. The theoretical, diffraction limited waist of this setup is

wtheo0 = K
λ

2 NA
= 1.3 µm. (2.29)

Here, K ≈ 0.87 is a numerical factor which takes the truncation of the Gaussian
beam into account [CVI09]. The aspect ratio of a trap in the harmonic approxima-
tion is [Gri00]

η =
ω⊥
ω‖

=

√
4V0
mw2

0√
2V0
mz2R

=
√

2π
w0

λ
, (2.30)

which for our parameters gives η ≈ 10.
The performance of the objective has been tested in two different ways. The

waist of the focus was measured as wx = (1.2± 0.1) µm and wy = (1.3± 0.1) µm by
imaging the focus with a second, identical objective. The resolution was measured as
rx = ry = (1.6± 0.1) µm by imaging a 0.8µm pinhole with the objective. The waist
has also been calculated by fitting the WKB-fomula (2.25) to the experimentally
measured energy levels of the microtrap. This resulted in w0 ≈ 1.8± 0.1 µm.
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2 The existing experiment

Figure 2.7: The two lenses of the objective (left) and the viewport of the vacuum
chamber. Units in mm. From [Ser11a]
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3 Atoms in periodic potentials

Quantum systems in periodic potential play a crucial role in solid state physics.
Exact solutions are often not possible due to the sheer size of those systems, but with
some approximations, the Hubbard model is well suited to describe these systems
[Hub63]. Using the techniques from chapter 2, we will be able to produce few fermion
systems in periodic potentials with low energy and low entropy, conditions required
for the Hubbard model to apply. In this chapter, we will examine whether we can
reach the interesting regimes with our setup. The basic explanation of the Hubbard
model will follow the lines of [Dua05], [Sca07] and [Tro08].

3.1 From Bloch states to the single-band
Fermi-Hubbard Hamiltonian

The Hamiltonian of our system is

H = T + V + Vint (3.1)

where T = p2

2m
= −~2∇2

2m
is the kinetic energy term, V is the external potential1 and

Vint describes the inter-particle interaction. One of the first studies on Fermions
in periodic potentials without interaction (Vint = 0) was performed by F. Bloch
[Blo29]. A periodic potential is invariant for translations by a lattice vector R, i.e.,
V (r + R) = V (r). The eigenstates of the Hamiltonian (also called Bloch states)
can be expressed by a product of plane waves and a periodic function

ψnk(r) = eik·runk(r) (3.2)

where unk(r) = unk(r + R) with the principle quantum number n and the wave
vector k. As we want to study the properties of systems with multiple fermions,
it is convenient to work with Fock states. They are generated by the creation
(annihilation) operators a†nkσ (ankσ) which create (annihilate) a fermion in the state
|n,k, σ〉. These operators obey the anticommutation relations

1Our external potential will not contain an explicit overall trapping potential as in, e.g., [Sch08].
This is already provided by our microtraps themselves.
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3 Atoms in periodic potentials

{
a†nkσ, an′k′σ′

}
= δnn′δkk′δσσ′ (3.3a){

ankσ, an′k′σ′
}

= 0 (3.3b){
a†nkσ, a

†
n′k′σ′

}
= 0. (3.3c)

The Bloch states are non-localized and form a set of basis functions for the Hamil-
tonian with a periodic potential. By a Fourier transform of the basis, one obtains
localized Wannier functions [Wan37]

wn(r −Rj) =
1√
N

∑
k

eik·Rjψnk(r) (3.4)

centered on the lattice site Rj where N is the number of lattice sites. The cor-
responding creation (annihilation) operators are a†jnσ = 1√

N

∑
k e

ik·Rja†nkσ (ajnσ =
1√
N

∑
k e

ik·Rjankσ) and satisfy anticommutation relations equivalent to equations
(3.3).
Now we can define our fermionic field operators as

Ψ(†)
σ (r) =

∑
j,n

a
(†)
jnσwn(r −Rj). (3.5)

Inserting them into our Hamiltonian gives us

H =
∑
σ

∫
dr Ψ†σ(r) (T + V ) Ψσ(r) +

x
drdr′ VintΨ

†
↓(r
′)Ψ†↑(r

′)Ψ↓(r)Ψ↑(r). (3.6)

Taking into account only one energy level (i.e. dropping n), nearest neighbor hopping
(denoted in the first sum by 〈i, j〉) and on-site interaction, we get

H = −
∑
σ,〈i,j〉

J a†iσajσ +
∑
j

U a†j↓aj↓a
†
j↑aj↑ (3.7)

where the hopping and on-site interaction parameters are defined as

J =

∫
dr w(r −Ri) (T + V )w(r −Rj) and (3.8)

U = Vint

∫
dr w(r −Rj)w(r −Rj)w(r −Rj)w(r −Rj). (3.9)

As explained in section 2.1.1, the interaction potential is given by Vint = 4π~2a
ma3T

δ(r1 − r2) with the scattering length a = abg

(
1− ∆B

B−B0

)
. It has been rescaled by
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3.2 Predictions of the Hubbard model in the limits J � U and U � J

the trap size aT =
√

~
mωT

[Kes09] with the trapping frequency ωT . If we introduce

a chemical potential µ and the number operator njσ = a†jσajσ, the single-band
Hubbard Hamiltonian reads

H = −J
∑
σ,〈i,j〉

a†iσajσ + U
∑
j

nj↓nj↑ − µ
∑
j

(nj↓ + nj↑) . (3.10)

The kinetic term contains the tunneling parameter J and describes the hopping
of the atoms between neighboring sites. The interaction term accounts for the
interaction energy U between the atoms when they are on the same site. The last
term expresses the energy related to the total number of atoms in the system.
The notation of this Hamiltonian shows one great advantage of the Hubbard

model: It does not require the exact knowledge of the wavefunctions. The Wannier
functions do enter in the parameters J and U , but these parameters can be treated
as numbers when calculating observables such as the mean atom number per site.
We can intuitively understand our systems in terms of discrete particles on distinct
sites. First we will look at two limiting cases before calculating the full Hamiltonian
for a double well. The explicit calculation of the Hubbard parameters is shown in
the last section of this chapter.

3.2 Predictions of the Hubbard model in the limits
J � U and U � J

One limiting case of the Hubbard model is when tunneling is allowed but there is
no interaction (U = 0, J 6= 0). It is more convenient to describe the operators in
momentum space (a(†)

kσ). When applying periodic boundary conditions, our Hamil-
tonian becomes

H =
∑
k,σ

(εk − µ) a†kσakσ (3.11)

with the prefactor εk = −2J
∑

d cos(kd) for the case of a square lattice in d dimen-
sions. As expected εk is the dispersion relation with a bandwidth of 4J . In this
limit, a superfluid phase is formed.
In the other limit tunneling is suppressed (J = 0) which gives us the Hub-

bard physics of a single site. The Hamiltonian reduces to H = U
∑

j nj↓nj↑ − µ∑
j (nj↓ + nj↑) and we can calculate the partition function

Z =
∑
α

〈α| e−βH |α〉 = 1 + 2eβµ + e2βµ−βU . (3.12)

by summing over all states |α〉. Now we can calculate quantities such as the mean
energy E or the mean occupation ρ:
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3 Atoms in periodic potentials
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Figure 3.1: Occupation ρ vs. chemical potential µ with U = 4 for temperatures
T = 1, 3, 11 (blue, green, red) in natural units.

E = 〈H + µn〉 = Z−1
∑
α

〈
α
∣∣(H + µn) e−βH

∣∣α〉 =
Ue2βµ−βU

1 + 2eβµ + e2βµ−βU (3.13)

ρ = 〈n〉 =
2
(
eβµ + e2βµ−βU)

1 + 2eβµ + e2βµ−βU . (3.14)

For repulsive interactions U > 0, the occupation clearly shows signs of a Mott
insulating state for low temperatures (figure 3.1): Only when µ is larger than the
energy gap of the size U the occupation jumps to two. For even larger chemical
potentials, the occupation does not increase, indicating a band insulator. These and
other phenomena (e.g., effects concerning magnetism) can also be described by the
local moment

〈
m2
〉

=
〈
(n↑ − n↓)2〉 (3.15)

which is one for a singly occupied site and zero else. For strong interaction, all
sites are singly occupied and the moment over the entire sample is one. For high
temperatures, singly occupied sites are as likely as sites with an even occupation
number, so the average moment is 1/2. The number of doubly occupied sites is

d = 〈n↑n↓〉 =
1

2

(
〈n↑ + n↓〉 −

〈
m2
〉)

. (3.16)

Using this observable, the Mott insulating state of an ultracold Fermi gas has been
observed experimentally in an optical lattice [Sch08; Jör08].
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3.3 Solving the full Hubbard model for a double well

Dim. States Hamiltonian
1 |·, ·〉 0
1 |↑, ↑〉, |↓, ↓〉 0
1 |↑↓, ↑↓〉 2U

2 |·, ↑〉, |↑, ·〉, |·, ↓〉, |↓, ·〉
(

0 −J
−J 0

)
2 |↑↓, ↑〉, |↑, ↑↓〉, |↑↓, ↓〉, |↓, ↑↓〉

(
U −J
−J U

)

4 |↑, ↓〉, |↓, ↑〉, |↑↓, ·〉, |·, ↑↓〉


0 0 −J −J
0 0 J J
−J J U 0
−J J 0 U


Table 3.1: Dimensionality, states and Hamiltonians of the subspaces of the 2-site

Hubbard model.

3.3 Solving the full Hubbard model for a double
well

Now we want to treat the full Hamiltonian (3.10) for non-zero J and U while keeping
the particle number fixed (µ = 0). In the previous section, the Hamiltonians of the
limiting cases could be diagonalized easily for arbitrarily large lattices. This is not
the case anymore for the full Hamiltonian, since the kinetic term scales with a(†)2

and the interaction term with a(†)4. However, for finite lattice sizes, one can still
find exact solutions by the exact diagonaliziation method.
This method is particularly interesting for us in the case of a double well because

it is the simplest multi-well potential achievable with the new setup. The problem
is described by a 16-dimensional Hilbert space as there are 16 possible states (each
site can have no atoms, ↑, ↓ or ↑↓). The Hamiltonian has a block-diagonal form
with four 1-dimensional, four 2-dimensional and one 4-dimensional subspace. The
corresponding states and Hamiltonians can be found in table 3.1.
In the case of zero particles, four particles or two particles with the same spin,

there are no dynamics and the eigenenergies and eigenstates are trivial. If there is
one particle in the double well, it may sit on one or the other site. Its eigenstate
is a superposition thereof and its eigenenergy depends on the tunneling parameter
J . The expectation value of the energy is 〈E〉 = −J tanh(βJ), it decreases with
increasing J because the particle can minimize its kinetic energy if it is allowed
to delocalize across multiple lattice sites. Three particles in a double well behave
analogously to the one-particle case, but the energy of the system is shifted by the
interaction energy U .
If there are two particles of different spins in the double well, the system has four

eigenstates:
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3 Atoms in periodic potentials
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Figure 3.2: Eigenenergies of one spin ↑ and one ↓ particle in a double well for U = 1
depending on J . ε+ is black, ε− blue, ε3 red and ε4 green.

|ψ±〉 =

(
|↑, ↓〉 − |↓, ↑〉 − ε±

2J
(|↑↓, ·〉+ |·, ↑↓〉)

)√
2 + 2ε2±/(2J)2

(3.17a)

|ψ3〉 =
1√
2

(|↑, ↓〉+ |↓, ↑〉) (3.17b)

|ψ4〉 =
1√
2

(|↑↓, ·〉 − |·, ↑↓〉) . (3.17c)

The respective eigenenergies

ε± =
U

2

1±

√(
4J

U

)2

+ 1

 (3.18a)

ε3 = 0 (3.18b)
ε4 = U (3.18c)

are shown in figure 3.2. If we look at strong interactions U � J , the lowest

eigenenergy is ε− ≈ −4J2/U . Its eigenstate |ψ−〉 ≈
(|↑,↓〉−|↓,↑〉− 2

U
(|↑↓,·〉+|·,↑↓〉))√

2+8/U2
≈

1√
2

(|↑, ↓〉 − |↓, ↑〉) indicates that the ground state of the Hubbard model at half
filling is a singly occupied, anti-ferromagnetic configuration.
Now we can study how the method of preparation affects the state in the trap.

Herefore we keep β and U fixed. If we prepare a double well with both particles
on one site and the other one empty, our initial state is |ψ(0)〉 = |↑↓, ·〉. Suppose
that at the beginning, the barrier between the wells is infinitely high, then we can
describe this state as a single well problem with the energy U (J = 0). If we
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3.3 Solving the full Hubbard model for a double well

suddenly (diabatically) decrease the barrier to J ≈ U , our state will evolve into a
superposition of |ψ+〉, |ψ−〉 and |ψ4〉 states. If we increase J adiabatically, our state
will evolve into the |ψ4〉 state for reasons of energy conservation (figure 3.2). One
problem emerges, however, if J becomes very large: then it is not possible anymore
to speak of wavefunctions localized on lattice sited which was used in the derivation
of the Hubbard model and off-site interactions can be of the same order as the on-site
interactions [Sca05].

In order to take this into account, we have to reconsider the full Hamiltonian
(3.6). Hitherto, we only used the parts proportional to w4(r − Rj) of the second
term. This means that only the wavefunction overlap on the same site is taken into
account. Now, we also allow interparticle interactions when the particles are on
neighboring sites. The resulting additional terms for Hamiltonian (3.7) read

UNN
∑
〈i,j〉

(
ni↑nj↓ − a†i↑a

†
j↓ai↓aj↑ − a

†
i↑a
†
i↓aj↓aj↑

)
and (3.19)

∆J
∑

〈i,j〉,σ 6=σ′
niσ

(
a†iσ′ajσ′ + a†jσ′aiσ′

)
. (3.20)

The first term describes the off-site interaction and is proportional to the density
overlap on one site for particles which are centered on neighboring sites: UNN =
Vint

∫
drw2(r−Ri)w

2(r−Rj). The second term modifies the tunneling depending
on the on-site density to J ′ = J −∆J where ∆J = Vint

∫
dr w3(r −Ri)w(r −Rj).

In the limit for two completely separated sites (J = 0), the wavefunctions of the
different sites do not overlap and both aforementioned parameters are zero. For
the case of two completely overlapping sites (Ri = Rj), the wavefunctions of the
"different" sites completely overlap and UNN = ∆J = U . As ∆J goes linearly
and UNN quadratically with the off-site overlap, ∆J is always larger than UNN .
Written in matrix notation, this extended Hubbard model (EHM) introduces new
off-diagonal terms to the Hamiltonian for the |ψ±〉 states. The new eigenenergies

ε± =
U − UNN

2

1±

√(
4J ′

U − UNN

)2

+ 1

+ 2UNN

ε3 = 0

ε4 = U − UNN

(3.21)

are shown in figure 3.3. The eigenenergy ε4 drops to zero as tunneling is more and
more allowed because the fermions try to minimize their overlap due to the repulsive
interaction.
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3 Atoms in periodic potentials

Barrier height0

5

Ε/U

Figure 3.3: Eigenenergies of the Hubbard model with off-site interaction in depen-
dence of the barrier height between the sites. The barrier height de-
creases from left to right, which is equivalent to an increase of J . Note
that this is not an exact solution as UNN and ∆J have only been ap-
proximated to their asymptotic behavior. ε+ is black, ε− blue, ε3 red
and ε4 green.

3.4 Calculating the interaction and tunneling
parameters

In the previous section, we have found solutions to the Fermi-Hubbard Hamiltonian
while treating the Hubbard parameters as numbers. However, in order to compare an
experiment with the theoretical Hubbard model, we have to calculate those numbers
explicitly. Therefore we have to know the wavefunctions in the potential.
The first step is calculating our potential. It is formed by two microtraps as

described in section 2.1.2. We will restrict ourselves to the axis connecting the two
wells, making it a 1D problem. Along this axis, the intensity profile of the single
beams is Gaussian. We assume that both beams have the same intensity, so the
total intensity profile is given by

I(x, d) = I0

(
e−

(x−d)2

2σ2 + e−
(x+d)2

2σ2

)
(3.22)

where 2d is the distance between the centers of the beams and 2σ is the 1/e2

beam waist. The characteristics of this potential strongly depend on the separa-
tion of the beams. For large separations (d > σ), there is an intensity minimum
between two maxima, for smaller separations, there is only one maximum (fig-
ure 3.4a). The position of the extrema is determined by the transcendental equation
x/σ = d/σ tanh(dx/σ2) (figure 3.4b). An important quantity of this potential is the
trapping frequency, which can be calculated with Udip(d) from equation (2.18) as
ωT =

√
k/m =

√
−Udip(d)/(mσ2) in the harmonic approximation of one of the

intensity maxima.
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3.4 Calculating the interaction and tunneling parameters
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Figure 3.4: (a) Intensity profiles (eq. (3.22)) and (b) position of the extrema for
x/σ = d/σ tanh(dx/σ2) for σ = 1 and d = 0, 0.5, 1.0, 1.5, 2.0.

With the potential, we calculate the single-particle 1D wavefunction numerically
using a script adapted from [Eve10] by solving the Schrödinger equation with a
discretized coordinate x→ xi, Ψ(xi)→ Ψi, xi+1 − xi = ∆x:

HΨi = − ~2

2m

(Ψi+1 −Ψi)/∆x− (Ψi −Ψi−1)/∆x

∆x
+ VΨi = EiΨi. (3.23)

After finding the eigenenergies and eigenvectors, one can bring the wavefunctions of
the lowest-lying symmetric and antisymmetric states into the left-right (LR) basis
according to ΨL/R = (ΨS ± ΨA)/

√
2. Suppose one starts with an atom in the left

site, i.e. Ψ(t = 0) = ΨL, then the tunneling is described by

T =

∣∣∣∣∫ dxΨ∗(t)ΨL

∣∣∣∣2 = cos2

(
ES − EA

2~
t

)
. (3.24)

The tunneling parameter J can be calculated as

J = 〈ΨR|H |ΨL〉

=
1

2
(〈ΨS| − 〈ΨA|)H (|ΨS〉+ |ΨA〉)

=
ES − EA

2

(3.25)

and the parameters U , ∆J and UNN can be obtained by using the L/R-wavefunctions
as the Wannier functions for the numerical integration. In figures 3.5 and 3.6, some
exemplary wavefunctions and parameters are shown. Note that the parameters
have been converted to trapping frequencies by division by Planck’s constant h for
easier comparison with the values from the existing experiment. Figure 3.6e shows
that even for a fixed separation, the ratio J/U can be varied by over five orders of
magnitude by tuning the laser power between 0.1 and 2.0mW. From figure 3.6f one
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3 Atoms in periodic potentials
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Figure 3.5: Potentials, energy levels and wavefunctions for a double well created
by focused laser beams with a waist of w0 = 0.8 µm, a separation of
2d = 1.0 µm and a laser power of 0.15 mW (a) and 1 mW (b) each. The
first four energy levels and wavefunctions are shown in red, blue, green
and purple respectively.

can see that for tunneling parameters J ' 1000, the parameters ∆J and UNN (which
drops much faster than ∆J) can be neglected. Keep in mind that the parameters
in the real experiment will not exactly match the calculated parameters, as the
calculation was performed only in 1D.
The complete code for the numerics can be found in appendix A.
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3.4 Calculating the interaction and tunneling parameters
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Figure 3.6: Numerical results for the parameters of the Hubbard model. The sep-
aration was kept constant at 1 µm, the scattering length was set to
a = 100 Bohr radii and the laser power was varied between 5 10−2 mW
and 4 mW. The red crosses indicate the settings from figure 3.5.
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4 The new setup

The new setup has several goals: Its primary purpose is to create a flexible array
of microtraps which is realized by adding an acousto-optic deflector (AOD) to the
setup. It creates multiple beams which enter the objective at different angles and
thus form foci at different postitions after the objective. The properties of the AOD
are described in the next chapter. In addition, a new objective designed in [Ser11a]
has been assembled by Jenoptik. The layout of the new optical setup is explained
in the first part of this chapter. The design and testing of the new objective is
discussed in the second part.

4.1 Layout of the new setup

The addition of an AOD and a new objective to the apparatus creating the microtrap
requires extensive modifications of the setup. As the planning and constructing of
those modifications were projected to take several months, it was decided to build
and test an entirely new setup on a breadboard seperate from the main experiment.
Other than the organizational advantages, this also allows tests which could not
have been performed otherwise, such as the direct observation of the focus of the
new objective. After the testing the new setup will replace the current setup at the
main experiment.
A schematic of the new setup is shown in fig. 4.1. A 1064 nm laser beam with

a 1/e2-diameter of (1.23± 0.02) mm is coupled out of a single mode fiber. Its
polarization is cleaned by a λ/2-waveplate and a polarizing beam splitter (PBS).
The waveplate after the PBS is used for diagnostics when a laser beam is sent in
the reverse direction. The beam is then reflected into the AOD which is mounted
on a modified 2-axis kinematic mirror mount. The mount is enables us to optimize
the diffraction efficiency in both transverse directions by tuning the angle of the
AOD and mirror in front of it. After the AOD, the 0th order beam and its higher
orders enter a fiber coupler. The fiber coupler consists of an aspheric lens (focal
length f = 18.56 mm, Thorlabs C280TME-B) and a FC/APC fiber adapter. The
fiber adaper is mounted in a XY-mount, so it can be displaced relative to the lens
in directions transversal to the beam. It now fulfills two roles: When it is coaxial
with the lens, a fiber can be mounted for diagnostics with a beam in the reverse
direction. When the fiber adapter is displaced from the beam axis, it can be used
to block undesired orders produced by the AOD since the fiber adapter is exactly
in the focal plane of the aspheric lens.
The f = 18 mm lens forms a telescope together with a f = 300 mm plano-convex

lens which increases the beam diameter to approximately 19.9 mm. The first and
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4 The new setup
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Figure 4.1: Schematic of the breadboard of the new setup. The specifications of the
optical components are given in appendix B.

third mirror between the two lenses are used to align the position and angle of the
beam relative to the f = 300 mm lens. To change the collimation of the telescope,
the mount of this lens can be moved along a rail. Optimally, the beam after the
telescope is collimated, but it can also be adjusted to be slightly convergent or
divergent. This will shift the focal plane behind the objective closer or farther away,
respectively, which can be utilized to optimize the overlap of the microtraps with
the dipole trap reservoir along the axis of the microtrap beam.
After the telescope, the beam passes through a 2′′ beam sampler which deflects 4%

of the beam into the diagnostics arm. Two cameras monitor the beam profile and the
foci of the f = 18 mm lens. The rest passes through a 2′′ 50/50 beam splitter onto
two mirrors which are used to direct the beam through a dichroic mirror towards the
objective. The light which has been reflected by the 50/50 beam splitter is guided
onto a photodiode for the stabilization of the overall laser power (see section 5.2).
The beam sampler is a key element of an interferometer together with a silver

mirror in the short arm and a dichroic mirror which is placed on the case of the
objective. The interferometer is used to align the objective perpendicular to the
incoming laser beam which is essential for the quality of the foci.
The alignment procedure is described in more detail in the appendix B.

4.2 The new objective

4.2.1 Design

The objective has been designed with three main goals: small focus size, high nu-
merical aperture and optimum operating conditions for 671 nm and 1064 nm light.
The target for the focus was to create a waist w0 ≈ 0.8 µm which is significantly
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4.2 The new objective

smaller than the current one (w0 ≈ 1.3 µm nominally, 1.8 µm as calculated from
the measured trap frequencies [Ser11a]). This leads to a larger separation of trap
levels and probably to a more reliable preparation of the few-fermion systems (see
section 2.3.1). However, it also means that the trap now is less elongated, its aspect
ratio (eq. 2.30) is expected to be η ≈ 3 compared to η ≈ 10 in the current setup. As
a consequence we expect a more complex energy level scheme where the coupling
of radially excited states to the axial spilling force will have to be determined. The
aspect ratio may be increased by reducing the waist of the collimated beam entering
the objective at the cost of a larger focus size.
In order to detect the atoms by fluorescence imaging, the objective has been de-

signed to have a high numerical aperture NA = 0.6 for light with a wavelength of
671 nm (currently NA = 0.27). It can collect 10% of the emitted photons which
leads to a better contrast of the fluorescence images. Also, a higher NA increases
the resolution assuming that the objective is diffraction limited. In this case, the
Rayleigh criterion specifies the resolution as the distance between the central inten-
sity maximum and the nearest minimum of the point spread function:

r =
0.61λ

NA
(4.1)

Its high resolution at λ = 671nm of r = 680nm allows it to probe atoms in separate
microtraps or maybe even in separate sites of a 1064nm standing wave optical lattice.
From the previous paragraphs it is clear that the objective has to be able to operate

with both 671 nm light for imaging and 1064 nm light for trapping. Additionally,
we want to switch between the trapping and imaging mode effortlessly. This design
goal was addressed by choosing the glasses of the lenses such that the chromatic
aberrations for the whole objective are minimized for those wavelengths. Ideally,
this would mean that the focal length is identical in both cases. The expected focal
shift from simulations was ∆f < 1 µm.
The reason why there were no objectives commercially available for these require-

ments is that the focal length has to be long enough to overlap the microtrap and
the dipole trap in the vacuum chamber. An objective fulfilling the aforementioned
requirements with a focal length of approximately 20 mm has been designed in
[Ser11a]. It consists of a small achromatic doublet (N-BK7, N-SF11 glasses), a large
achromatic doublet (N-SF66, N-PK51) and an asphere (N-FK5). Their positioning
in the casing of the objective can be seen in figure 4.1. The small achromat in-
creases the numerical aperture of the objective while maintaining the beam radius
at the entrance, effectively acting as an (achromatic) telescope together with the
large achromat. The large achromat’s purpose is to correct the system for its two
operating wavelengths. The asphere focuses the beam while correcting for the vac-
uum window. The nominal parameters are summarized in table 4.1. Unfortunately,
it is mechanically incompatible with the magnetic field coils at the position where
it will be mounted. This necessitated the design and construction of new field coils.
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4 The new setup

wavelength 1064 nm 671 nm
focal length 20.3mm
image distance ∞
diameter field of view 200µm
max. diffraction limited NA 0.6
entrance aperture diameter at max NA 24.4mm
resolution 1.08µm 0.68µm
waist of focus 0.72µm 0.45µm

Table 4.1: Design parameters of the objective from [Ser11a].

Fiber coupler

Mirror

Lens

Beam sampler

CCD camera

Spherical glass
mirror

Figure 4.2: Schematic of the Michelson interferometer with one spherical mirror.

4.2.2 Tests

With an interferometer (fig. 4.2) the wavefront of both copies ‘BA1001’ and ‘BA1002’
of the objective have been tested at 1064 nm and 671 nm. The key element of the
interferometer is the concave spherical mirror which was also produced by Jenoptik.
It is placed behind the focus in such a way that the light is reflected perpendicularly
on its surface and traces the same way back through the objective. Assuming that
the sphere and the other optical elements are perfect, figure 4.3 shows how much
the wavefront is distorted by the objectives. Between neighboring light and dark
regions, there is a path difference of λ/2. ‘BA1002’ distorts the wavefront slightly
less than ‘BA1001’: for a single pass through the objective, the difference over the
entire beam profile of 24 mm diameter at λ = 1064 nm is less than λ/4.
In order to check the shape and size of the focus, its reflection off the sphere is

imaged on a CCD-camera with a f = 762.5 mm lens. The magnification of this
system is M = 762.5/20.3 ≈ 37.6. A profile of the focus is fitted with a Gaussian
(fig. 4.4a). The resulting waist is w0 = 0.94 µm at 1064 nm. For 671 nm the waist
is approximately 1.5 times larger, but the rings around the focus suggest that this
might have been caused by, e.g., alignment errors.
The resolution was measured by illuminating a pinhole of approximately 800 nm
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4.2 The new objective

(a) (b)

(c) (d)

Figure 4.3: Wavefront measurements with the interferometer of the ‘BA1001’ (left)
and ‘BA1002’ (right) objective at 671 nm (top) and 1064 nm (bottom).
The entrance aperture of the objective was between 22.4mm and 24mm.
The path difference between light and dark regions is half a wavelength.
Note that the light passes twice through the objective, doubling the
wavefront errors on the pictures.

(a) (b)

Figure 4.4: (a) Fit of the profile of the focus created by the sphere. x-axis in units
of pixels (pixel size 2.2 µm), y-axis in arbitrary units. (b) Focus of the
objective imaged with the microscope objective.
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Figure 4.5: Point spread functions of a pinhole imaged with the ‘BA1002’ objective
for 671 nm (a) and 1064 nm light (b). The magnification of the imaging
system was M = 160±5. (c) shows the profile of (a) in y-direction. The
units are in µm.

λ = 671 nm λ = 1064 nm
x-profile 1.08± 0.07 1.48± 0.09
y-profile 1.05± 0.04 1.59± 0.11
nominal 0.68 1.08

Table 4.2: Resolution of objective ‘BA1002’ in µm.

diameter from behind and imaging it directly with the objective. The pinhole was
placed slightly farther away from the objective than the focal length (20.3 mm)
leading to an image of the pinhole on the CCD camera 332 cm behind the objective.
The resulting magnification was M = 160± 5. The resolution was determined from
distance d of the first minimum from the central maximum of the image of the
pinhole (figure 4.5):

rexp =
d

M
. (4.2)

The resolutions for 671nm and 1064nm light were extracted from the profiles in two
directions (table 4.2). The measured values are significantly larger than the expected
theoretical values. We suspect that this is partly due to the finite size of the pinhole
which is close to the resolution of the objective. Especially for the wavelengths
smaller than the size of the pinhole, a portion of the light would pass through the
pinhole undiffracted. This would lead to a smaller effective NA and thus to a larger
resolution according to equation (4.1). Another reason for the deviation from the
nominal values could be manufacturing errors of the objective. This is supported
by the fact that the structures visible in figure 4.5 did not change qualitatively for
different alignments of the optical components.
The field of view was tested later in the main setup by tuning the AOD from

minimum to maximum deflection. The focus was imaged with a microscope objective
(CVI Melles Griot 04OAS016) with a magnification M = 39.6 (figure 4.4b). The
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4.2 The new objective

waist of the focus varied between w0 = 0.94 µm and w0 = 1.00 µm. The focus shift
was also measured with this setup by shining in a collimated λ = 671 nm beam via
the dichroic mirror. The value was (40± 5) µm which is not compatible with the
simulated values of < 18 µm [Ser11a]. However, this should not be a problem if the
imaging optics for the 671 nm light are slightly adjusted.
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5 Radio frequency setup and
acousto-optic deflector

5.1 Theory of acousto-optics

Devices utilizing acousto-optic effects such as an acousto-optic modulator (AOM)
play an important role in optics and information technology. In essence, they consist
of a piezo-electric transducer, a medium such as flint glass and an acoustic absorber.
The transducer and the absorber are attached to the medium on opposite sides.
The transducer induces acoustic vibrations in the medium when it is driven by
a RF signal. The absorber prevents the signal from reflecting off the side of the
medium and hereby suppresses standing waves. The physics of acousto-optics can
be described by the means of wave optics. This section will explain the basic theory
of acousto-optics (cf. [Sal91]) and the diffraction of light when multiple sound waves
are involved [Hec77].
An acoustic wave is a propagating density modulation in a medium. It is charac-

terized by its velocity vs, frequency f = Ω/(2π), wavelength Λ = vs/f = 2π/q and
its intensity Is. An acoustic plane wave leads to a strain

s(x, t) = s0 cos(Ωt− qx) (5.1)

in the medium with the amplitude s0 =
√

2Is
ρv3s

which depends on the acoustic inten-
sity Is and the mass density ρ of the medium. The refractive index n of the medium
is perturbed by

∆n(x, t) = −1

2
pn3

0s(x, t) = n1 cos(Ωt− qx). (5.2)

The photoelastic constant p is a phenomenological value, typically of the order 0.1.
It can be used to define the acousto-optic figure of merit M = p2n6

ρv3s
which allows us

to write the perturbation of the diffractive index as n1 =
√
MIs/2.

The periodically modulated refractive index n(x, t) = n0−∆n(x, t) acts as an op-
tical grating on light waves propagating through the medium (figure 5.1). For exper-
iments it is important to know with which efficiency the incident light is diffracted
into the different orders. This problem can be treated with coupled-wave theory
where we calculate the total electrical field of the incident and diffracted light. In
the following, we will work in the xz-plane and neglect the unit vector of the electri-
cal field pointing in the y-direction, keeping only the complex amplitude E. It has
to fulfill the wave equation for a inhomogeneous medium [Sal91]
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Figure 5.1: Reflection of a optical plane wave on a periodically inhomogeneous
medium. From [Sal91]

∇2E − 1

c2

∂2E

∂t2
≈ −S (5.3)

with the radiation source

S = −µ0
∂2∆P

∂t2
= −2

n

c2
0

∂2

∂t2
(∆nE) (5.4)

which is generated by the perturbation of the polarization density of the medium
by the total field E itself. To get an idea of what the source emits, we use the first
Born approximation where we assume that the radiation source is created only by
the incident plane wave Ei = Ai exp (i (ωit− ki · r)). Inserting this and ∆n from
equation (5.2) into the previous equation, we get

S = −n1

n

(
k2

+Ae
i(ω+t−k+·r) + k2

−Ae
i(ω−t−k−·r)

)
(5.5)

with ω± = ω ± Ω, k± = k ± q and k± = ω±/c. We see that the source can emit
either an upshifted (+) or a downshifted (−) plane wave.
Suppose that the total field which perturbs the medium consists of the incident

plane wave and the upshifted plane wave E = Ei0 exp(iωit) + E+0 exp(iω+t) where
Ei0 and E+0 contain the amplitudes and the space-dependent oscillations. Then the
source gives us

S = S+e
iωit + Sie

iω+t + terms of other frequencies (5.6)

where Si/+ = −k2
+/i(n1/n)Ei/+0. Substituting this result into equation (5.3), we

see from comparing the terms of equal frequency that E has to fulfill the coupled
Helmholtz equations (mode equations)

(
∇2 + k2

i

)
Ei0 = S+(

∇2 + k2
+

)
E+0 = Si.

(5.7)
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5.1 Theory of acousto-optics

In order to solve these equations, we restrict ourselves to small angles θ � 1 where
the incident wave and the diffracted wave ki ≈ k+ ≡ k both run approximately par-
allel to the z-axis. Hence we can replace the electrical fields with Ei0 = Ai exp(−ikz)
and E0+ = A+ exp(−ikz). Assuming that the second derivative of A is small com-
pared to k∂A/∂z (slowly varying envelope), the mode equations become

dAi
dz

=
i

2
k
n1

n
A+

dA+

dz
=
i

2
k
n1

n
Ai.

(5.8)

We can solve this set of equations by substituting the second equation into the
differentiated first equation. Using the boundary condition A+(0) = 0, which states
that no light has been diffracted yet at the position where the light enters the
medium, one finds the solutions

Ai(z) = Ai(0) cos

(
V

2

z

d

)
A+(z) = iAi(0) sin

(
V

2

z

d

)
.

(5.9)

V = kn1d expresses the normalized modulation of the index of refraction which is
proportional to

√
Is. The intensity which is reflected in a medium of length d (i.e.

the diffraction efficiency) is

R =
|A+(d)|2

|Ai(0)|2
= sin2

(
V z

2d

)
= sin2

(
πL

λ0 sin θ

√
M

2

√
Is

)
. (5.10)

In the last step we used d = L/ sin θ and n1 =
√
MIs/2. The reflectance depends

on the square root of the intensity of the sound wave Is, which for small values leads
to R ∝ Is (figure 5.2a).

So far, we have only discussed the acousto-optics with a single sound wave in one
dimension. As we want to create multiple diffracted beams in the experiment, we
will have to operate the AOD with multiple acoustic waves of different frequencies
simultaneously. The theory of multimode acousto-optics is explained in detail in
[Hec77]. In general, we have N acoustic signals with similar frequencies which
modulate the diffraction index of the medium by

∆n(x, t) =
N∑
j=1

nj sin(Ωjt− qjx+ δj) (5.11)

where the index j denotes the quantities of the jth acoustic signal and δj is its phase.
Our total electric field now has the form
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Figure 5.2: (a) Intensity reflectance R depending on the acoustic intensity Is for
SF6 dense flint glass [Esc75]. The approximate operating window of our
AOD is shown in red.1(b) Intensity reflectance of one of the two beams
when the AOD is driven with two acoustic signals of intensity Is each
(red). For comparison, the reflectance from (a) is shown in blue.

E = eiωt
∞∑

m1=−∞

∞∑
m2=−∞

· · ·
∞∑

mN=−∞

A(m) exp

(
i
N∑
j=1

mj(Ωjt+ δj)− ikm · r

)
. (5.12)

The first sums over m1 . . .mj . . .mN express that the incoming plane wave can be
scattered mj times by any of the sound waves j, where mj can be any integer
number. Every possible scattering process can be described by its set of mj, (m) =
(m1,m2, . . . ,mN), meaning that the incident wave was scattered m1 times off sound
wave 1, m2 times off sound wave 2, etc.2 The amplitude A(m) depends on this
set of scatterings. The total number of scatterings D(m) =

∑N
j=1 |mj| is called the

interaction order, terms of higher interaction order usually have a smaller amplitude.
This is in contrast to the diffraction order, where terms of different interaction
order are grouped based on their diffraction angle: G(m) =

∑N
j=1mj. In the last

exponential of equation (5.12), the angular frequency and the wave vector of the
scattered light are taken into account, where km · r = ki · r +

∑N
j=1 mjqjx. After

inserting E into the wave equation, the coupled mode equations become(
d

dz
− i∆K(m)

)
A(m) =

N∑
j=1

Vj
2d

(
A(m+aj) − A(m−aj)

)
. (5.13)

If we choose the Bragg angle θB for the first diffracted order as our incidence angle θ,
the wavevector mismatch ∆K is very large except for the zeroth and first diffraction
order (figure 5.3). Therefore, terms where G 6= 0 or 1 can be neglected and the
mode equations become

1Note that the manufacturer of the AOD hasn’t reported the exact type of dense flint glass used
in the AOD.

2One can also regard this process as the absorption and emission of phonons by the photon.
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d

dz
A0

(m) =
N∑
j=1

Vj
2d
A1

(m+aj)
(5.14a)

d

dz
A1

(m) = −
N∑
j′=1

Vj
2d
A0

(m−aj′ ) (5.14b)

where the superscript indicates the diffraction order and Vj = kinjd/ cos θ similar
to the previous case with only one acoustic signal. All sets of (m) which result in
G(m) = 0 and G(m) = 1 respectively are allowed.
For N = 2, which in our experiment would result in a double well potential of

two microtraps, there are known analytic solutions [Hec77]:

A0
(m,−m) =

∞∑
r=0

amrz
r (5.15a)

A1
(m,−m+1) = −

∞∑
r=0

(
−1

r + 1

)(
V1

2d
a(m−1)r

V2

2d
amr

)
zr+1 (5.15b)

with the coefficients

amr =

br/2−|m|/4c∑
s=0

Cmrs
(−1)r/2

r!

(
V1V2

4d2

)2s+|m|(
V 2

1 + V 2
2

4d2

)r/2−|m|−s
and (5.16)

Cmrs =
(r/2)!

(r/2− |m| − s)!(s+ |m|)!s!
. (5.17)

bxc denotes the floor of x. In the case of equal acoustic intensities V1 = V2 = V , the
amplitudes can be expressed by Bessel functions of the first kind:

A0
(m,−m) = (−1)mJD(m,−m)

(V ) (5.18a)

A1
(m,−m+1) = (−1)m+1JD(m,−m+1)

(V ). (5.18b)

In any case, the reflectance for the incident beam to interaction order (m) is

R =

∣∣A(m)(d)
∣∣2∣∣A(0)(0)
∣∣2 . (5.19)

For two equal amplitude acoustic signals, this becomes

R =

∣∣∣A1
(1,0)(d)

∣∣∣2∣∣A(0)(0)
∣∣2 =

∣∣∣A1
(0,1)(d)

∣∣∣2∣∣A(0)(0)
∣∣2 = |J1(V )|2 . (5.20)
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Figure 5.3: Bragg condition for the first diffraction order. The absolute momenta
|ki| and |ki + q1| match, other orders are suppressed due to momentum
mismatch.

for the first interaction order. The result is shown in figure 5.2b.

The previous results are suited for estimating the diffraction efficiencies for a chain
of N microtraps. Even for a perfect AOD, the sum of the intensities of the principal

diffracted orders
∑

j

∣∣∣A1
(0+am)

∣∣∣2 will not add up to one because of intermodulated
diffraction orders. For example, for two equal signals, each of the principal diffracted
orders has a maximum efficiency R = 0.339. Intermodulated orders consist of light
with a interaction order which is higher than the diffraction order. For example, if
the light absorbs two quanta of the first sound wave and emits one of the second
sound wave, it will be in the first diffraction order even though it has scattered three

times. However, the intensity of intermodulated orders like
∣∣∣A1

(2,−1)

∣∣∣2 = |J3(V )|2 of

the aforementioned example stays at least 2 orders of magnitude below
∣∣∣A1

(1,0)

∣∣∣2. This
should be unproblematic for experiments with two microtraps, but if more than two
acoustical frequencies are used, the intermodulated microtraps could overlap with
the principle microtraps, deteriorating the potential. In that case, one has to find
a compromise between high diffraction efficiency for the principle orders and low
diffraction efficiency for the intermodulated orders.

As we use a 2-axis AOD, naturally, we want to diffract the incident light in both
axes simultaneously in order to create two-dimensional arrays of microtraps. For
this diffraction problem, there are no theoretical solutions available. In [Qid91], the
coupled mode equations are derived by generalizing the ansatz of [Hec77]. Unfor-
tunately, they were only solved in the Raman-Nath regime for thin acousto-optical
devices which does not apply to our AOD. In order to describe the two-dimensional
diffraction of our AOD, it is probably most practical to map the diffraction efficien-
cies experimentally for the required values.
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5.2 Power stabilization of the laser

Figure 5.4: RF setup of the control loop for the power stabilization of the laser. In
parentheses are the designations of the components from Minicircuits.
From [Ser11a].

5.2 Power stabilization of the laser

For the deterministic preparation of few atoms, the stability of the microtrap depth
is crucial. Therefore a stabilization control loop for the overall laser power has been
implemented using an AOM. The first diffracted order is coupled into a fiber which
leads to the main setup. Its diffraction efficiency can controlled through the RF
power with which the AOM is driven. The RF power can be adjusted by tuning
DC control voltage of the mixers (fig. 5.4). We use two mixers to obtain a larger
dynamical range of the RF power. The feedback signal is gathered by a photodiode
after the AOD in the main setup (figure 4.1). It is processed with the ADWin
control of the main experiment [Ott10]. In order to provide optimal sensitivity of
the AOM, it is operated in the linear regime. The stability of the laser intensity is
within the measuring resolution of the ADWin (0.3 mV) which is better that 1h.
As shown in [Ser11a], the old microtrap needed a stability of < 0.6% to guar-

antee a preparation fidelity of 99.5%. For the new microtrap a stability on the
order of several % should be sufficient for the same preparation fidelity, however,
keeping the fluctuation low will reduce errors and heating in more complex systems.
With the new setup it will be possible to prepare systems with ten or more atoms
deterministically, which is the limit for the current setup.

5.3 RF-setup for the AOD

The current RF-setup for the AOD is designed to generate two frequencies inde-
pendently from each other (figure 5.5). We use two voltage controlled oscillators
(VCO) which can generate RF-signals between approximately 25 − 55 MHz. The
frequency is controlled by a 0 − 17 V DC input from the ADWin. A part of each
signal is tapped with a splitter for monitoring. The power of the remaining signals
can be controlled separately over a broad range (≈ 40dB) by attenuating them with
two mixers each, similar to the setup for the power stabilization of the laser. The
amount of attenuation is controlled with a DC input by the ADWin. The attenuated
signals are combined with another splitter (combiner) and amplified by 46 dB. The
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Figure 5.5: Current RF setup for driving the AOD and RF monitoring setup. RF-
connections in grey, DC-connections in blue. Minicircuits designations
in parentheses.

amplified signal is sent to the AOD.
A coupler between the amplifier and the AOD taps the signal with 30 dB atten-

uation and sends it to the second port of the monitoring setup. There, the relative
amplitude fluctuations can be measured. The phases of both signals are matched
with a phase shifter and then combined in a phase detector. The signal which comes
from the VCO saturates the phase detector. Consequently, the phase detector’s out-
put is essentially a DC signal with the voltage proportional to the amplitude of the
signal at the coupler. In order to filter out beats, we send the output signal through
a low pass.
The AOD has to fulfill two conditions for a given RF power and frequency: Firstly,

the laser power of the diffracted order should be very stable. Secondly, the diffrac-
tion angle should be very stable. Hence also the RF powers and frequencies have
to be at least equally stable. For future experiments involving tunneling between
multiple microtraps, the relative stability of the RF signals is more important than
the absolute stability. In order to check the stability, the signal at the coupler was
logged for a day (fig. 5.6a). In the first hour after turning on the setup the signal
changes until thermal equilibrium, mainly of the amplifier, has been reached. At
around 12:00 a.m., both signals have a sharp drop. This is probably caused by the
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Figure 5.6: RF signal as measured with the ADWin. Between 5:30 pm and 12:00pm,
10 values were taken every 20 seconds. Each point in (a) is the average
over 10 such values, the error bars are the standard errors. In (b) the
ratio of the two signals was calculated for every value and then averaged.
The error bars again are the respective standard errors. Note that the
discrete levels are due to the limited resolution of the analogue to digital
converter in the ADWin.

power supply which was unreliable at the time of the measurement. It is not clear
why the signals gets a large variation between 03:00 a.m. and 05:00 a.m. A remark-
able feature of both RF powers are the oscillations with a period of approximately
one hour. It was found out that those oscillations are likely caused by temperature
oscillations on the order of 0.1 K caused by the temperature control loop of the
laboratory. However, the oscillations do not show in the relative variation of the RF
powers (fig. 5.6b), which is stable to less then 1h except during the 2 hour period
after 03:00 a.m. All in all, the tests show that the RF setup fulfills the stability
requirements.

5.4 Tests of the AOD

One of the most important characteristics of the AOD is its response to the frequency
and power of the RF setup. As expected, the deflection angle of the beam depends
linearly on the frequency generated by the VCO (fig. 5.7a). This was measured by
determining the center of the focus on the CCD 2 (figure 4.1, then a Point Grey
camera) by means of fitting the profile of the focus with a Gaussian.
The behavior of the diffraction efficiency is more complex. We cannot directly

apply the results from the first section of this chapter because our AOD is far from
ideal. The power produced by the RF setup which generates the acoustic waves in
the AOD strongly depends on the RF frequency. We have measured that the output
power of the VCO alone drops by 3 dB when increasing the frequency from 25MHz
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Figure 5.7: (a) Position of the focus on the CCD 2 (Point Grey, pixel size 3.75 µm,
magnification M ≈ 1.67). The error bars are the fitting errors of the
individual Gaussian fits of the focus profiles. The slope of the linear fit
f(x) = a+ bx corresponds to b = 8.73 µm/MHz. (b) Dependence of the
VCO frequency on the control voltage. The parameters of the linear fit
are a = 21.6 MHz and b = 3.24 MHz/V.

to 55MHz. This can cause the RF power at the AOD to vary by 3dB as well, which
corresponds to 50%. We then have to take into account that the RF power which
arrives at the AOD is not converted to acoustic waves entirely: The power reflected
by the AOD varies by 25 dB depending on the frequency, the maximum being at
5 dBm by typical operating parameters, which lies above the stability requirements
of 1h. Furthermore, a sweep over the RF frequency showed that the reflected RF
power oscillates with a period of ca. 100 kHz. Additionally, we do not know how
much of the power used by the transducers is converted to sound waves and how
much is dissipated.
In order to determine the diffraction behavior of the AOD, the power of the laser

beam was stabilized before the AOD. The beam was diffracted only in one direction
by one acoustic frequency at a time and the 0th order was blocked. The power
of the first order was measured with the photodiode. As can be seen in fig. 5.9a,
the efficiency changes at two different scales if the VCO voltage (i.e. RF frequency,
fig. 5.7b) is changed. The large scale variation has a period on the order of 1V VCO
voltage, the small scale variation on the order of 10 mV. We suspect that the small
variations stem from the reflection of RF power of the AOD, since the structures
are similar. If the RF power is changed, the diffraction efficiency does not respond
linearly (fig. 5.8b). At low power, the reason probably is the non-linear response
of the mixer to the control voltage (figure 5.8a). At high power, the non-linearity
could be due to the theoretically predicted saturation of the diffraction efficiency.
Since both the RF frequency and the RF power are non-trivial parameters for the
diffraction efficiency, a more extensive measurement was performed: The efficiency
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Figure 5.8: (a) RF power after the mixer at 45 MHz and (b) diffraction efficiency
at 30 MHz for different mixer control voltages and constant RF input
power.

was measured for 10000 steps in the RF frequency νRF and 10 steps in the RF power
PRF (or, more precisely, in the control voltage of the RF power). It turned out that
it could be fitted by a two dimensional polynomial of 9th power in νRF and 2nd power
in PRF :

UPD =
2∑

m=0

9∑
n=0

anm (νRF )n (PRF )m , (5.21)

where UPD is the voltage measured at the photodiode.
Since the fit only describes the large scale behavior of the efficiency and not

the small scale oscillations, the actual data deviate from it by up to 3%. This is
not sufficient to control the depth of the microtrap to the desired level of < 1h.
Therefore the idea was to implement a lookup table in the control of the AOD in
such a way that it calculates the required RF power given a desired RF frequency
and diffraction efficiency. However, with measurements for only 10 different RF
powers, inverting the data directly would be too rough. For a given frequency, the
mixer control voltage is calculated by interpolating it linearly between the nearest
two measured frequencies at the nearest measured efficiency value. The same is done
for the next nearest efficiency value, resulting in two mixer settings for the desired
frequency at the nearest and next to nearest to desired efficiency. The optimum
mixer setting is acquired by interpolating between these two values. The exact
method for generating the lookup table and interpolating the values can be found
in appendix C. A visual representation of the lookup table is shown in figure 5.11.
A sweep with the lookup table activated over the VCO voltage, i.e. RF frequency,

shows that, between 2 and 8 V, the large fluctuations of the efficiency are much
less pronounced (cf. figure 5.12, figure 5.9a). It is remarkable that in spite of the
fine sampling of the lookup table, the smaller oscillations are still visible with an
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Figure 5.9: (a) Frequency response of the AOD for the diffraction of a laser beam
in x and y directions seperately. The inset shows a detail of the curve.
For sake of clarity, only 1/20th of the measured values are displayed.
(b) Laser intensity (PD voltage) for 10 RF powers (mixer voltage) and
2000 RF frequencies (VCO voltage), shown as red points. The fitted
polynomial (eq. (5.21)) is shown as a surface. Brighter data points lie
above the fit surface, darker data points lie below.

amplitude of at least 1%. One possible explanation is that in the days between the
measurement of the lookup table and the test of the lookup table, the frequency
of the VCO could have drifted, e.g., due to temperature changes. Therefore, one
might get better results once the lookup table is retaken when the RF setup has been
installed on a temperature stabilized mount. Even if the small oscillations cannot be
eliminated, that would not restrict experiments where the positions of the microtraps
(RF frequencies) are constant. In these cases, the diffraction efficiency can by fine-
tuned by fitting the images of the foci from the diagnostics camera. An image of
four foci with typical, uncorrected intensities is shown in figure 5.10.
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Figure 5.10: Grey scale image of four foci created with two RF-signals each for the
x- and y-directions at the AOD. The other features are likely to be
intermodulation orders from the AOD or reflections in the optical setup.
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Figure 5.11: Lookup table for the AOD: required mixer voltage (color map) vs. ef-
ficiency and RF frequency. If the desired efficiency cannot be reached,
the mixer stays at its maximum voltage (10 V).
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Figure 5.12: Frequency response of the AOD with the lookup table implemented.
At the edges, the diffraction efficiency could not be maintained as the
maximum RF power had been reached. The inset shows a detail of the
main graph.
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6 Conclusion and outlook

During this thesis, an apparatus was built which will enable the existing few-fermion
experiment to produce complex potential landscapes. The tests of this new setup,
in particular of the AOD and the new objective, show that it is able to create the
potentials with the required stability. The tunneling and interaction parameters of
the system can by tuned via the potential and the interaction strength over several
orders of magnitude.
The next step will be to put the new setup into operation at the experiment.

Before it can be installed, the old magnetic field coils of the experiment have to be
replaced. This entails a readjustment of the MOT and the dipole trap. With the
new setup in place, we have to overlap the position of the microtraps with the dipole
trap. Our preparation procedure of few-fermion systems in a single microtrap will
have to be reevaluated as the energy levels of the new microtrap have to be mapped
out. This will also allow us to determine the size and shape of the single microtraps.
Once these tests are completed, we can start studying multiple well potentials. We

will have to determine which preparation scheme is best for reaching the ground state
of a multiple well potential. The possibilities include preparing a single microtrap
and then allowing tunneling between microtraps or preparing multiple microtraps
simultaneously. At first, we will start working with a double well potential, where we
can check the agreement between the experiment and the theoretical results of this
thesis. Later, we can explore the phase diagrams of various potential landscapes for
different interaction strengths, potential depths, atom numbers, population imbal-
ances, etc. One of the simpler potentials would be a square array of four microtraps
(cf. figure 5.10), which with the right parameters could simulate either a square pla-
quette of a 2D lattice or a linear chain with periodic boundary conditions. Another
line of study are time averaged potentials. We can create, e.g., time averaged two-
dimensional potentials if we modulate the position of the microtraps at a much faster
time scale than the trapping frequency. For example, we could then investigate the
transition between 1D and 2D systems dynamically.
In order to create more complex potentials, we will have to expand the RF control

of the AOD. If we increase the number of simultaneous RF frequencies, this will
enable us to create large square arrays of up to 10 × 10 microtraps. However, a
practical solution has to be found to control the diffraction efficiency of the AOD
over the entire frequency range. This may be achieved by optimizing the lookup
table presented in this thesis. With large arrays of microtraps, we could research
the transition from finite lattices to infinite lattices. Combining this approach with
time averaged potentials, we could also create different lattice geometries, e.g., a
triangular lattice, by projecting the potential ‘line by line’.
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6 Conclusion and outlook

Another promising perspective would be manipulating single sites of an array.
One could for example artificially impose noise on the microtrap array or alter the
potential of specific sites, mimicking defects in solids. Also, one could use the single
site control to selectively release atoms of a certain spin state on certain sites from
the trap. This could be used to measure the distribution and the order of the atoms
in a lattice or to perform studies on quantum information technology.
All in all, the methods described in this section show that few-fermion systems

can potentially lead to important contributions in the fields of solid state physics,
few- and many-body physics. The setup described in this thesis is one of the initial
steps in this direction for our few-fermion experiment.
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Appendix





A Numerical calculation of the Hubbard
parameters in a double well

Mathematica script for calculating the wavefunctions, eigenenergies and Hubbard
parameters of a double well in one dimension. The physical meaning of the param-
eters is described in chapter 3. The script has been adapted and extended from
[Eve10].

Remove [ "Global ‘∗ " ] ;

(∗ I n i t i a l i z a t i o n o f parameters and va r i a b l e s ∗)

parameters = {a −> 1 . , s −> w0/2 , P −> 0.1∗10^−3 , δ −> 0 .0 ,
Vint −> 4∗π∗hbar^2/m∗ asc / at ^3};

(∗ va r i ab l e exper imenta l parameters : amplitude s ca l e , waist , l a s e r \
power , t i l t , i n t e r a c t i o n energy ∗)
(∗ a l l parameters in SI un i t s ∗)
d = 0.5∗10^(−6) ;

(∗ s epa ra t i on o f the microtraps ∗)
s e t s t a t e = 1 ; (∗ energy l e v e l ( s t a r t i n g from 1) ∗)
c = 2.99792458 10^8;

(∗ speed o f l i g h t ∗)
kb = 1.380658 10^(−23) ; (∗Boltzmann ’ s constant ∗)
hbar = 1.05457266 10^(−34) ; (∗ reduced Planck ’ s constant ∗)
Γ = 2 π 5 .872 10^6; (∗ l i n e width ∗)
m = 6 1 .67 10^(−27) ; (∗mass o f Li6 ∗)
λ0 = 671 10^(−9) ; (∗ t r a n s i t i o n wavelength ∗)
ω0 = 2 π c/λ0 ; (∗ t r a n s i t i o n f requency ∗)
a0 = 5.29177210∗10^(−11) ; (∗Bohr rad iu s ∗)

(∗ va r i ab l e exper imenta l parameters ∗)
asc = 100∗a0 ; (∗ s c a t t e r i n g l ength ∗)
w0 = 0.8∗ 10^(−6) ; (∗minimal beam waist ( z=0)∗)

(∗ f i x e d exper imenta l parameters ∗)
λ = 1064 10^(−9) // N ; (∗ t rapping wavelength ∗)
ω = 2 π c / λ ;
k = 2 π / λ ;
Er = hbar^2 ∗ (2∗π / λ)^2 / (2 ∗ m) ; (∗ r e c o i l energy ∗)
zr = π w0^2/λ ; (∗ r a y l e i g h range ∗)

(∗ c a l c u l a t e beam i n t e n s i t y ∗)
I0 = 2 P/(π∗
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w0^2) ; (∗ i n t e n s i t y o f one beam in focus , f a c t o r 2 b/c o f \
Gauss p r o f i l e ∗)
(∗w[ z_] :=w0 Sqrt [1+( z/ zr ) ^2] (∗Waists in l o n g i t ud i n a l ( i . e . v e r t i c a l ) \
d i r e c t i o n ( z ) ∗)
Intens itymax [ z_ , P_] := I0 [P] / ( Sqrt [ (1+( z/ zr ) ^2)∗(1+( z/ zr ) ^2) ] ) \
(∗ i n t e n s i t y in beam middle as a func t i on o f z ∗)
Intens itybeam [x_,y_, z_ , P_] := Intens itymax [ z , \
P]∗Exp[−2(x^2+y^2)/w[ z ] ^2 ] (∗ i n t e n s i t y in whole beam , f o r l a t e r 3D \
c a l c u l a t i o n s ∗) ∗)
V = −3 π c^2/

2/ω0^3∗(Γ/(ω0 − ω ) + \
Γ/(ω0 + ω ) ) ∗

I0 ; (∗ d ipo l e po t en t i a l , from (B) Eq (10) ∗)

(∗ Trapping f requency f o r a gauss ian po t e n t i a l ∗)
wt = Sqrt [−a∗V/ s^2/m] ;
at = ( Sqrt [ hbar/m/wt ] / . parameters ) ;

(∗ quan t i t i e s f o r numerics ∗)
pStart = −d − w0 ;
pEnd = d + w0 ;
pStep = (2∗d + 2∗w0) /127 ;
NumPStep = (pEnd − pStart ) /pStep // Round
pval [ i_ ] := pStart + i ∗pStep
dimVec = (NumPStep + 1)
(∗___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ \
___ ___ ___ ___∗)

(∗ De f i n i t i o n o f d i s c r e t i z e d po t en t i a l , Hamiltonian HΨ and \
wavefunct ion Ψ∗)

(∗ Calcu la te the en e r g i e s in Hz from here on ∗)
Po t en t i a l =
V/( hbar ∗2∗

π ) ∗( a ∗(PDF[ NormalDistr ibut ion [−d , s ] , x ] + (1 + δ ) ∗
PDF[ NormalDistr ibut ion [ d , s ] , x ] ) ∗Sqrt [ 2∗π ]∗ s − 2∗a ) ;

Po t en t i a l ;
% / . parameters ;
tmp = %;
Plot [ tmp , {x , −d − w0 , d + w0} ,
PlotRange −> {{−d − w0 , d + w0} , {0 , −2∗a∗V/( hbar ∗2∗π ) } / .

parameters } ]
HPsi [p_] = −hbar ^2/(2∗m) /( hbar ∗2∗π ) ∗( Ps i [ p + 1 ] + Psi [ p − 1 ] −

2∗Psi [ p ] ) /
pStep^2 + ( a ∗(PDF[ NormalDistr ibut ion [−d , s ] ,

pval [ p ] ] + (1 + δ ) ∗
PDF[ NormalDistr ibut ion [ d , s ] , pval [ p ] ] ) ∗Sqrt [ 2∗π ]∗ s − 2∗a ) ∗

V/( hbar ∗2∗π ) ∗Psi [ p ] ;
Ps iVector = Table [ Ps i [ p ] , {p , 0 , NumPStep} ] // Flat ten ;
(∗___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ \
___ ___ ___ ___∗)
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(∗ Finding the e igensystem : D iagona l i z a t i on o f H∗)

(∗Conversion o f the Hamiltonian in matrix form ∗)
Table [ HPsi [ p ] , {p , 0 , NumPStep} ] // Flat ten ;
% / . Psi [p_] / ; p < 0 −> 0 ;
% / . Psi [p_] / ; p > NumPStep −> 0 ;
% / . parameters ;

Coe f f i c i e n tAr r ay s [% , PsiVector ] ;
HMatrix = % [ [ 2 ] ] ;
MatrixForm [ HMatrix [ [ 1 ; ; 5 , 1 ; ; 5 ] ] ]
(∗ c a l c u l a t e f i r s t 25 e i g e n s t a t e s and e i g e n en e r g i e s ∗)
Eigensystem [ HMatrix , −25];
sys = {Reverse [ % [ [ 1 ] ] ] , Reverse [ % [ [ 2 ] ] ] } ;
E i g en s ta t e s
E igens ta te [ i_ ] := sys [ [ 2 , i ] ]
PsiVal [ state_ , p_] :=
I f [ ( p >= 0) && (p <= NumPStep) , E igens ta te [ s t a t e ] [ [ p ] ] , 0 ]

(∗ p lo t o f th ree e i g e n s t a t e s and t h e i r abso lu t e square ∗)
s t a t e = s e t s t a t e ;
PsiVal [ s ta te , (NumPStep + 1) /2 ] (∗ value o f wf on b a r r i e r ∗)
Show [ L i s tP l o t [

Table [ Table [ { pval [ i ] , PsiVal [ s t a t e + j , i ] } , { i , 0 , NumPStep } ] , { j ,
0 , 2 } ] , Joined −> True ,

P l o tS ty l e −> {{Red , Thick } , {Green , Thick , Dashed } , {Black , Thick }} ] ,
L i s tP l o t [
Table [ Table [ { pval [ i ] , PsiVal [ s t a t e + j , i ]^2} , { i , 0 ,

NumPStep } ] , { j , 0 , 2 } ] , Joined −> True ,
P l o tS ty l e −> {Red , {Green , Dashed } , Black } ] ]

s t a t e =.
(∗ check ing the orthonormal i ty o f the e i g e n s t a t e s ∗)
Sum[ PsiVal [ 1 , p ]∗ PsiVal [ 1 , p ] , {p , 0 , NumPStep} ] // Chop
Sum[ PsiVal [ 1 , p ]∗ PsiVal [ 2 , p ] , {p , 0 , NumPStep} ] // Chop
E igenene rg i e s
EPsi [ i_ ] := sys [ [ 1 , i ] ] ;
E f i t = Fit [ Table [ { i , EPsi [ i ] } , { i , 10 , 25} ] , {1 , x , x^2} , x ]
(∗ note : f o r a harmonic o s c i l l a t o r , the e i g e n en e r g i e s would i n c r e a s e \
l i n e a r l y ∗)
Show [ L i s tP l o t [ Table [ { i , EPsi [ i ] } , { i , 1 , 25} ] ,

P l o tS ty l e −> PointS i ze [Medium ] ] , Plot [ E f i t , {x , 1 , 2 5 } ] ]
L i s tP l o t [ Table [ { i , EPsi [ i ] − EPsi [ i − 1 ] } , { i , 2 , 25} ] ,
P l o tS ty l e −> PointS i ze [Medium ] ]

(∗___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ \
___ ___ ___ ___∗)

(∗Summary : Potent ia l , E i g enene rg i e s and E igen s ta t e s ∗)

Show [
Plot [ Po t en t i a l − EPsi [ 1 ] / . parameters , {x , −d − w0 , d + w0} ,
PlotRange −> {{−d − w0 ,

d + w0} , {0 .05∗ a∗V/( hbar ∗2∗π ) , −0.25∗a∗V/( hbar ∗2∗π ) } / .
parameters } ] ,
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Plot [ { EPsi [ 1 ] − EPsi [ 1 ] , EPsi [ 2 ] − EPsi [ 1 ] , EPsi [ 3 ] − EPsi [ 1 ] ,
EPsi [ 4 ] − EPsi [ 1 ] , EPsi [ 5 ] − EPsi [ 1 ] , EPsi [ 6 ] − EPsi [ 1 ] ,
EPsi [ 7 ] − EPsi [ 1 ] , EPsi [ 8 ] − EPsi [ 1 ] } , {x , −d − w0 , d + w0} ,

P lo tS ty l e −> {Red , Blue , Green , Purple , Black , Black , Black , Black } ] ,
L i s tP l o t [
Table [ { pval [ i ] , ( PsiVal [ 1 , i ] ) ∗( EPsi [ 3 ] − EPsi [ 1 ] ) ∗2 + EPsi [ 1 ] −

EPsi [ 1 ] } , { i , 0 , NumPStep } ] , Joined −> True ,
P l o tS ty l e −> {Thick , Red } ] ,

L i s tP l o t [
Table [ { pval [ i ] , ( PsiVal [ 2 , i ] ) ∗( EPsi [ 3 ] − EPsi [ 1 ] ) ∗2 + EPsi [ 2 ] −

EPsi [ 1 ] } , { i , 0 , NumPStep } ] , Joined −> True ,
P l o tS ty l e −> {Dashed , Thick , Blue } ] ,

L i s tP l o t [
Table [ { pval [ i ] , ( PsiVal [ 3 , i ] ) ∗( EPsi [ 3 ] − EPsi [ 1 ] ) ∗2 + EPsi [ 3 ] −

EPsi [ 1 ] } , { i , 0 , NumPStep } ] , Joined −> True ,
P l o tS ty l e −> {Thick , Green } ] ,

L i s tP l o t [
Table [ { pval [ i ] , ( PsiVal [ 4 , i ] ) ∗( EPsi [ 3 ] − EPsi [ 1 ] ) ∗2 + EPsi [ 4 ] −

EPsi [ 1 ] } , { i , 0 , NumPStep } ] , Joined −> True ,
P l o tS ty l e −> {Thick , Purple } ] , AxesStyle −> 14 ,

AxesLabel −> {"Pos i t i on ␣ [m] " , "Energy␣ [Hz ] " } , Labe lSty l e −> 14 ,
Frame −> True ]

(∗___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ \
___ ___ ___ ___∗)

(∗Def in ing a l e f t −r i ght−ba s i s ∗)

PsiValL [p_] := ( PsiVal [ 1 , p ] + PsiVal [ 2 , p ] ) / Sqrt [ 2 ] ;
PsiValR [p_] := ( PsiVal [ 1 , p ] − PsiVal [ 2 , p ] ) / Sqrt [ 2 ] ;
s t a t e = 1 ;
Show [
L i s tP l o t [
Table [ Table [ { pval [ i ] , PsiVal [ s t a t e + j , i ] } , { i , 0 , NumPStep } ] , { j ,

0 , 1 } ] , Joined −> True , P l o tS ty l e −> {{Red} , {Green , Dashed}} (∗ ,
PlotRange−>{{pval [ 0 ] , pval [ NumPStep ]} ,{ −0 .5 ,0 .5}} ∗) ] ,

L i s tP l o t [ { Table [ { pval [ i ] , PsiValL [ i ] } , { i , 0 , NumPStep } ] ,
Table [ { pval [ i ] , PsiValR [ i ] } , { i , 0 , NumPStep} ] } , Joined −> True ,

P l o tS ty l e −> {{Black , Thick } , {Blue , Thick }} ,
PlotRange −> {{ pval [ 0 ] , pval [ NumPStep ] } , {−0.5 , 0 . 5 } } ] ,

PlotRange −> {{ pval [ 0 ] , pval [ NumPStep ] } , {−0.5 , 0 . 5 } } ]
s t a t e =.
(∗ time evo lu t i on o f ΨL∗)
Psi1 [p_, t_ ] :=
Exp[− I /hbar∗EPsi [ 1 ] ∗ t ] / Sqrt [ 2 ] ∗ PsiVal [ 1 , p ] +
Exp[− I /hbar∗EPsi [ 2 ] ∗ t ] / Sqrt [ 2 ] ∗ PsiVal [ 2 , p ]

L i s tP l o t [
Table [ { pval [ i ] ,

Ps i1 [ i , 0 . 0 01 ]∗ Psi1 [ i , 0 . 0 0 1 ] ∗ / . parameters } , { i , 1 ,
NumPStep} ] // Chop , Joined −> True ,

PlotRange −> {{ pval [ 1 ] , pval [ NumPStep ] } , {0 , 0 . 2 } } ]
(∗___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ \
___ ___ ___ ___∗)
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(∗ Ca lcu la t ing the Hubbard parameters ∗)

(∗ tunne l ing behavior : how much i s l e f t in the l e f t we l l a f t e r a time \
t ? ∗)
Tunnelcomplex [ t_ ] :=
Sum[ Psi1 [ i , t ] ∗∗PsiValL [ i ] , { i , 1 , NumPStep} ]
Tunnel [ t_ ] := Tunnelcomplex [ t ] ∗∗Tunnelcomplex [ t ]
Plot [ Cos [ ( EPsi [ 1 ] − EPsi [ 2 ] ) ∗hbar ∗2∗π/hbar /2∗ t ]^2 / . parameters , {t ,

0 , 2/( EPsi [ 2 ] − EPsi [ 1 ] ) } ]
J = ( EPsi [ 2 ] − EPsi [ 1 ] ) /2 (∗ tunne l ing parameter ∗)
U = Vint∗

Sum[ PsiValR [ i ] ∗∗PsiValR [ i ] ∗∗PsiValR [ i ]∗
PsiValR [ i ] , { i , 1 , NumPStep} ]/ (2∗π∗hbar ) / .

parameters (∗on−s i t e i n t e r a c t i o n ∗)
UNN = Vint∗

Sum[ PsiValR [ i ] ∗∗PsiValL [ i ] ∗∗PsiValR [ i ]∗
PsiValL [ i ] , { i , 1 , NumPStep} ]/ (2∗π∗hbar ) / .

parameters (∗ o f f−s i t e i n t e r a c t i o n ∗)
DJ = Vint∗

Sum[ PsiValR [ i ] ∗∗PsiValL [ i ] ∗∗PsiValL [ i ]∗
PsiValL [ i ] , { i , 1 , NumPStep} ]/ (2∗π∗hbar ) / .

parameters (∗ tunne l ing c o r r e c t i o n from o f f−s i t e i n t e r a c t i o n ∗)
(∗___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ \
___ ___ ___ ___∗)

(∗ Ca lcu la t i on o f Hubbard parameters f o r d i f f e r e n t l a s e r powers ∗)

(∗ s t a r t from the d e f i n i t i o n s po t en t i a l , Hamiltonian and wavefunct ion \
from above ∗)
power = 5∗10^(−5) ;
l = 1 ; (∗ index ∗)
(∗ i n i t i a l i z e output l i s t s ∗)
powe r l i s t = {} ;
J = {} ;
U = {} ;
UNN = {} ;
DJ = {} ;
While [ power <= 0.004 ,
temp = {} ;
temp2 = {} ;
temp3 = {} ;
temp4 = {} ;
parameters = {a −> 1 . , s −> w0/2 , P −> power , δ −> 0 ,

Vint −> 4∗π∗hbar^2/m∗
asc / at ^3}; (∗ r e i n i t i a l i z e parameters f o r every i t e r a t i o n ∗)

at = ( Sqrt [ hbar/m/wt ] / . parameters ) ;
temp = Table [ HPsi [ p ] , {p , 0 , NumPStep} ] // Flat ten ;
temp2 =
temp / . parameters / . Ps i [p_] / ; p < 0 −> 0 / .
Psi [p_] / ; p > NumPStep −> 0 ;

temp3 = Coe f f i c i e n tAr r ay s [ temp2 , Ps iVector ] ;
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A Numerical calculation of the Hubbard parameters in a double well

HMatrix = temp3 [ [ 2 ] ] ;
temp4 = Eigensystem [ HMatrix , −25];
sys = {Reverse [ temp4 [ [ 1 ] ] ] , Reverse [ temp4 [ [ 2 ] ] ] } ;
E igens ta te [ i_ ] := sys [ [ 2 , i ] ] ;
PsiVal [ state_ , p_] :=
I f [ ( p >= 0) && (p <= NumPStep) , E igens ta te [ s t a t e ] [ [ p ] ] , 0 ] ;

PsiValL [p_] := ( PsiVal [ 1 , p ] + PsiVal [ 2 , p ] ) / Sqrt [ 2 ] ;
PsiValR [p_] := ( PsiVal [ 1 , p ] − PsiVal [ 2 , p ] ) / Sqrt [ 2 ] ;
EPsi [ i_ ] := sys [ [ 1 , i ] ] ;
(∗ append r e s u l t s to output l i s t s ∗)
J = Append [ J , ( EPsi [ 2 ] − EPsi [ 1 ] ) / 2 ] ;
U = Append [U,

Vint∗Sum[
PsiValR [ i ] ∗∗PsiValR [ i ] ∗∗PsiValR [ i ]∗
PsiValR [ i ] / ( 2∗π∗hbar ) , { i , 1 , NumPStep } ] ] / . parameters ;

UNN = Append [UNN,
Vint∗Sum[

PsiValR [ i ] ∗∗PsiValL [ i ] ∗∗PsiValR [ i ]∗
PsiValL [ i ] / ( 2∗π∗hbar ) , { i , 1 , NumPStep } ] ] / . parameters ;

DJ = Append [DJ,
Vint∗Sum[

PsiValR [ i ] ∗∗PsiValL [ i ] ∗∗PsiValL [ i ]∗
PsiValL [ i ] / ( 2∗π∗hbar ) , { i , 1 , NumPStep } ] ] / . parameters ;

p owe r l i s t = Append [ power l i s t , power ] ;
power =
power ∗ 1 . 1 ; (∗ c a l c u l a t e next power value , can be exponent i a l or \

l i n e a r ∗)
l = l++;
]

(∗ p lo t the output l i s t s ∗)
ListLogLogPlot [
Table [ { powe r l i s t [ [ i ] ]∗1000 , J [ [ i ] ] } , { i , 2 , Length [ powe r l i s t ] } ] ,
AxesStyle −> 14 , AxesLabel −> {Power [mW] , J [Hz ] } , Labe lSty l e −> 14 ,
Joined −> True , P l o tS ty l e −> Thick ]

ListLogLogPlot [
Table [ { powe r l i s t [ [ i ] ]∗1000 , U [ [ i ] ] } , { i , 2 , Length [ powe r l i s t ] } ] ,
AxesStyle −> 14 , AxesLabel −> {Power [mW] , U [Hz ] } , Labe lSty l e −> 14 ,
Joined −> True , P l o tS ty l e −> Thick ]

ListLogLogPlot [
Table [ { powe r l i s t [ [ i ] ]∗1000 , UNN[ [ i ] ] } , { i , 2 , Length [ powe r l i s t ] } ] ,
AxesStyle −> 14 , AxesLabel −> {Power [mW] , Subsc r ip t [U, NN] [Hz ] } ,
Labe lSty l e −> 14 , Joined −> True , P l o tS ty l e −> Thick ]

ListLogLogPlot [
Table [ { powe r l i s t [ [ i ] ]∗1000 , −DJ [ [ i ] ] } , { i , 2 , Length [ powe r l i s t ] } ] ,
AxesStyle −> 14 , AxesLabel −> {Power [mW] , ∆ J [Hz ] } ,
Labe lSty l e −> 14 , Joined −> True , P l o tS ty l e −> Thick ]

ListLogLogPlot [
Table [ { powe r l i s t [ [ i ] ]∗1000 , J [ [ i ] ] /U [ [ i ] ] } , { i , 2 ,

Length [ powe r l i s t ] } ] , AxesStyle −> 14 ,
AxesLabel −> {Power [mW] , J/U} , Labe lSty l e −> 14 , Joined −> True ,
P l o tS ty l e −> Thick ]

ListLogLogPlot [
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Table [ { powe r l i s t [ [ i ] ]∗1000 , −DJ [ [ i ] ] /U [ [ i ] ] } , { i , 2 ,
Length [ powe r l i s t ] } ] , AxesStyle −> 14 ,

AxesLabel −> {Power [mW] , ∆ J/U} , Labe lSty l e −> 14 ,
Joined −> True , P l o tS ty l e −> Thick ]

ListLogLogPlot [
Table [ { powe r l i s t [ [ i ] ]∗1000 , −DJ [ [ i ] ] / J [ [ i ] ] } , { i , 2 ,

Length [ powe r l i s t ] } ] , AxesStyle −> 14 ,
AxesLabel −> {Power [mW] , ∆ J/J } , Labe lSty l e −> 14 ,
Joined −> True , P l o tS ty l e −> Thick ]
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B Alignment of the optical setup

Fiber coupler

λ/2 wave plate
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Figure B.1: Optical setup

This appendix summarizes how to efficiently align the new setup. In order to
follow the entire procedure, it might be necessary to remove some optical components
from the breadboard. The labels used in the description are specified in figure B.1.

• Adjust the beam coming from fiber coupler FC1 through cube C1 onto mirror
M1.

• Adjust the height and angle of the beam behind M1 by aligning it through two
irises which are at the correct height. The AOD and M2 have to be removed
for this step.

• Install the AOD. Check with the powermeter and the IR camera that the beam
is not being clipped on either aperture of the AOD.

• Walk the angle of the AOD and M1 in both axes to maximize the intensity of
the diffracted order. Check the quality of the beam profile, for example with
CCD2.

• Align FC2. The f = 18 mm lens must be coaxial with the fiber adapter. This
can be achieved by passive alignment with a slip ring.

• Mark the position of the beam after the AOD without FC2. Insert FC2 such
that the beam is centered on that position.
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B Alignment of the optical setup

• Shift the fiber adapter of FC2 such that only the 1,1 diffracted order passes.
Use this order for the further alignment.

• Lock the AOD and M1.

• Align the telescope such that the beam is centered on L1 and passes through
it perpendicularly:

– Use M2 for the position on L1, check it visually, e.g., with an iris.

– Use M4 for the angle. Use a mirror mounted in an SM tube. Attach it
behind L1 on the same lens mount.

– Try to overlap the incoming and reflected beam by walking M2 and M4.

• Collimate the beam after L1 by using a shear plate:

– Install a shear plate behind L1 at an angle of approximately 45◦ sideways.

– Shift L1 along its rails until the number of interference fringes after the
shear plate is minimized (they should then be horizontal).

– Check the position and angle of the beam on L1 as described previously.

• Lock M2, M3, M4 and L1.

• Position beam sampler BS1 centrally on the beam. If it is off-center, this can
be seen with CCD2 on the beam profile.

• Position C2 centrally on the beam.

• Align the interferometer:

– Install a mirror (e.g., M6) perpendicularly to the beam and overlap the
incoming and reflected beams, for instance at FC1. Couple into FC1 if
possible.

– Align M7 by minimizing the number of interference fringes on the beam
profile at CCD2.

• Before proceeding, check that the focus on CCD1 is in order.

• Use M5 and M6 to align the beam on the vacuum viewport (with the objective
removed):

– Adjust the position on the viewport with M5 visually, e.g., with a di-
aphragm.

– Adjust the angle interferometrically with M6 by minimizing the interfer-
ence pattern at CCD2. Note that the pattern will be very faint as the
viewport has an antireflection coating.

– Lock M5 and M6.
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• Insert the objective and align it with the Newport 5-axis mount (LP-2A):

– Center the objective on the beam.

– Adjust the angle of the objective interferometrically: Place a dichroic
mirror on the rim of the casing of the objective with the 1064nm reflective
part towards the objective. Optimize the interference pattern on CCD2

– Lock the Newport mount carefully while checking the interference pat-
tern.
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C Lookup table generation

The following MATLAB code generates a lookup table for the mixer values if pro-
vided with a efficiency measurement. It converts the raw measurement data into a
format compatible with LabVIEW and removes duplicate data.

%%
cd ( ’ // jochim−s e r v e r / a l l g eme ine s /AFM␣Setup/RF/AOD&RF␣ e f f i c i e n c y /autorun␣

VCO␣sweep␣mixer␣ s tep ␣high ␣ r e s ’ )
A=importdata ( ’z_new_mt_VCO_mixer_realx . adc ’ ) ;
f i r s t r u n =0;
%%
makeplots=1;
%%
VCOsteps=8;
VCOstepvoltage=1; % in V
VCOsweepvoltage=2; % he ight o f ramp in V
t imestep=1; % in ms
sweeptimestep=5; % in ms
sweepstart t ime=A(1 , 3 ) ; % in ms
sweependtime=max(A( : , 3 ) )+t imestep ;
mixe r s t epvo l tage =0.5 ; % in V
minmixervoltage=0; % in V
maxmixervoltage=10; % in V
mixers teps =20;
%%
% de l e t e the f i r s t column where the recorded ADC_FIFO channe l s are
% ind i c a t ed
i f f i r s t r u n==0
A( : , 1 ) = [ ] ;
f i r s t r u n =1;
end ;
%%
% ca l c u l a t e the VCO vo l t ag e s from the image number ( f i r s t column ) and

the
% time ( second column ) .
% NOTE: Check f i r s t that the f i l e s t a r t s where the autorun a c tua l l y
% s ta r t ed !
% NOTE: This g i v e s the VCO vo l tage with the r e s o l u t i o n o f the ADC FIFO
% measurement s tep s i z e s which i s not the ac tua l r e s o l u t i o n o f the VCO
% sweep .
A( : , 5 )=mod( (A( : , 1 )−A(1 ,1 ) ) ,VCOsteps+1) .∗VCOstepvoltage+(A( : , 2 )−

sweepstart t ime ) .∗VCOsweepvoltage . / ( sweependtime−sweepstart t ime ) ;
%%
% ca l c u l a t e the mixer vo l t ag e s
A( : , 6 )=f l o o r ( (A( : , 1 )−A(1 ,1 ) ) . / ( VCOsteps+1) ) .∗ mixer s t epvo l tage ;
%%
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C Lookup table generation

% remove rows where mixer vo l tage > maximum s p e c i f i e d value from
autorun

A( f i nd (A( : , 6 )>maxmixervoltage ) , : ) = [ ] ;
%%
% round VCO vo l tage to 1e−4
A( : , 5 )=round (A( : , 5 ) ∗1 e4 ) /1 e4 ;
%%
% average the va lue s in b locks o f sweeptimestep / t imestep
A( : , 7 )=f i l t e r ( ones (1 , sweeptimestep / t imestep ) /( sweeptimestep / t imestep )

,1 ,A( : , 4 ) ) ;
Amean=[A( 1 : 5 : end , 5 ) A( 1 : 5 : end , 6 ) A( 5 : 5 : end , 7 ) ] ;
%%
% remove rows where the VCO vo l tage i s repeated f o r same mixer vo l tage
[ b ,m, n]=unique (Amean ( : , 1 : 2 ) , ’ rows ’ , ’ f i r s t ’ ) ;
Bmean=Amean(m, : ) ;
Bmean2=sort rows (Bmean , 2) ;
%%
% normal ize e f f i c i e n c y /PD vo l tage
nbins =2000;
maxeff=max(Bmean ( : , 3 ) ) ;
Bmean ( : , 3 )=round (Bmean ( : , 3 ) /maxeff∗nbins ) ;
maxeff=max(Bmean2 ( : , 3 ) ) ;
Bmean2 ( : , 3 )=Bmean2 ( : , 3 ) /maxeff ;
%%
% make a matrix with axes VCO vo l tage and e f f i c i e n c y and e n t r i e s mixer
% vo l tage
y s i z e=length ( unique (Bmean ( : , 1 ) ) ) ;
x s i z e=nbins ;
M=ze ro s ( y s i z e , x s i z e ) ;

f o r n=1: l ength (Bmean ( : , 1 ) )
M( round ( (Bmean(n , 1 ) ∗1000)+1) , round (Bmean(n , 3 ) ) )=Bmean(n , 2 ) ;

end ;
%%
% make the i n t e r p o l a t i o n matrix N
ysizeN=length ( unique (Bmean2 ( : , 2 ) ) ) ;
xs izeN=length (Bmean2 ( : , 1 ) ) / ys izeN ;
N=ze ro s ( ysizeN , xs izeN ) ;

f o r p=1: ys izeN
N(p , 1 : xs izeN )=Bmean2 ( ( p−1)∗ xsizeN+1:p∗xsizeN , 3 ) ;

end ;
%%
% in t e r po l a t e d mixer vo l t age f o r a g iven VCO vo l tage and " e f f i c i e n c y "
cd ( ’ // jochim−s e r v e r / a l l g eme ine s /AFM␣Setup/RF/AOD&RF␣ e f f i c i e n c y ’ ) ;
f o r q=1: x s i z e

f o r r=1: y s i z e
M( r , q )=i n t e r p o l a t e (N, r , ( q−1)/ nbins ) ;

end
end ;
%%
Msingle=s i n g l e (M) ;
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%%
dlmwrite ( ’ l ookuptab l e sma l l . txt ’ ,M( 1 : 5 : end , : ) , ’ d e l im i t e r ’ , ’ \ t ’ , ’

p r e c i s i o n ’ , 6) ;

This lookup table is used by LabVIEW to interpolate the settings for the RF
power for any desired efficiency and frequency. The LabVIEW sub-VI is shown in
figure C.1. It manipulates the timing table for the ADWin which sets the control
voltages for the experiment at the given times. The line containing the desired
efficiency is extracted from this table and replaced by the interpolated control voltage
values for the mixers.

Figure C.1: LabVIEW sub-VI for interpolating the mixer voltages.
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