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Abstract

This thesis reports on the progress towards the realization of an ultracold three-
component Fermi gas of 6Li in a two-dimensional optical lattice.
A standing wave of pancake shaped optical dipole traps in vertical direction was

set up and ultracold atoms were transferred into these traps from the optical dipole
trap in which the evaporative cooling is performed. In these pancake shaped traps
the atoms are tightly confined in the vertical direction, thereby creating a quasi two-
dimensional confinement. The relative intensity noise of the trap laser was measured
and it was shown that noise induced heating is negligible in the experiment.
We measured the aspect ratio of the trap frequencies to be 1.2:1:357, thereby

confirming the tight confinement in the vertical direction as well as the approximate
cylindrical symmetry of the trap in the horizontal plane. The lifetime of atoms
in the traps was measured to be approximately 50 s which is long enough to ob-
serve dynamics in the lattice without being severely limited by hole heating. Using
Kapitza-Dirac diffraction, we were able to confirm the spacing between the traps of
about 4µm as well as estimate the trap depth. To measure the population in each
trap we employed a radio-frequency tomographic measurement. With this method
we were able count the number of atoms in each trap individually and show that
long term phase drifts of the trap positions are smaller than π/8.

Zusammenfassung

Diese Arbeit beschreibt den Fortschritt hinsichtlich der Realisierung eines ultra-
kalten drei-komponentigen Fermi-Gases aus 6Li in einem zweidimensionalen optis-
chen Gitter.
Eine stehende Welle oblatenförmiger optischer Dipolfallen in vertikaler Richtung

wurde aufgebaut und ultrakalte Atome wurden aus einer elliptisch, langgestreckten
optischen Dipolfalle, in der das evaporative Kühlen stattfindet, in diese umgeladen.
In diesen Fallen sind die Atome sehr stark in der vertikalen Richtung eingeschlossen
wodurch ein quasi zweidimensionaler Einschluss der Atome erreicht wird. Eine Mes-
sung des relativen Intensitätsrauschen des Fallen-Lasers konnte nachweisen, dass das
durch Rauschen verursachte Heizen im Experiment vernachlässigbar ist.
Wir haben das Verhältnis der Fallenfrequenzen als 1.2:1:357 gemessen und damit

den starken Einschluss in der vertikalen Richtung sowie die annähernd zylindrisch-
symmetrische Form der Fallen in der horizontalen Ebene bestätigt. Die Lebensdauer
der Atome in den Fallen beträgt ungefähr 50 s, was ausreichend ist um dynamis-
che Prozesse im Gitter zu beobachten ohne durch Loch-Heizen beschränkt zu sein.
Mittels Kapitza-Dirac Beugung konnten wir den geplanten Abstand zwischen den
Fallen von 4µm bestätigen sowie die Fallentiefe abschätzen. Um die Atomzahl in
den einzelnen Fallen zu messen, haben wir eine tomographische Radio-Frequenz
Spektroskopie angewandt. Mit dieser Methode konnten wir die Atomzahl in den
einzelnen Fallen bestimmen und wir konnten zeigen, dass Phasenänderungen der
Fallenpositionen auf lange Sicht kleiner als π/8 sind.
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1. Introduction
The complexity of a quantum many-body system scales exponentially with the parti-
cle number. Thus, the resources required to calculate e.g. the time evolution of such
a system with classical computers increase very rapidly even for moderate particle
numbers. This poses a major challenge when investigating theoretical models and
one can often only satisfactorily describe the physics in certain parameter regimes.
To solve this dilemma, R. Feynman proposed the use of a universal quantum simu-
lator [Fey82]. Such a hypothetical quantum computer would allow to compute any
quantum system of interest. In contrast to such a universal quantum simulator, it
has become feasible in recent years to use controllable quantum systems where the
Hamiltonian is well known to mimic specific systems which are not easily accessible
experimentally but share essential properties. Then all results obtained with these
quantum simulators can be directly applied to the mimicked system.
In 1995, the first experimental realization of a Bose-Einstein condensate (BEC) of

ultracold bosonic atoms [And95, Dav95] demonstrated spectacularly that trapped
dilute clouds of ultracold atoms can act as such controllable quantum systems. The
importance of this milestone was highlighted by the fact that E. A. Cornell, C. E.
Wieman and W. Ketterle were awarded the Nobel prize already in 2001. A few
years after the first BEC, also the first quantum degenerate gas of fermionic atoms
was achieved [DeM99] in 1999.
Ultracold atoms are perfectly suited as quantum simulators since the trapping

potential and thus the confinement of the atoms can be controlled very precisely. In
addition, by applying homogeneous magnetic offset fields it is possible to tune the
interaction strength between the atoms via so-called Feshbach resonances [Ino98].
This controllability of the confinement and the interactions makes these systems a
powerful tool to investigate theoretical models as one can access different parameter
regimes in a very controlled manner with the same setup.
A research field where ultracold atoms have proved to be very successful in recent

years is condensed matter physics. For example it was long known that some mate-
rials are insulators although they were predicted to be conductors by band theory.
N. Mott explained this phenomena already in 1937, showing that the tunneling of
the electrons can be suppressed when the interaction between them dominates their
behavior [Mot37]. The simplest theoretical model which can describe this transition
is the Fermi-Hubbard model which has two free parameters: the tunneling rate and
the interaction energy. Studying this model in a solid-state system however is chal-
lenging since one has to deal with finite size effects, defects in the lattice and most
importantly the fixed coulomb interaction between the electrons.
Ultracold fermions trapped in an optical lattice however do not have these limita-

tions. There the lattice is perfectly periodical and both the tunneling rate and the
interaction strength can be controlled independently. Two distinguishable fermions -
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either different atomic species or different internal states of the same atomic species
- can then be directly mapped onto the up and down spin configuration of the elec-
trons in the metal and thus it is possible to observe the transition from a tunneling
dominated superfluid phase to the Mott-insulating phase. The emergence of the
Mott-insulator phase was experimentally first shown in a one-component bosonic
gas [Gre02], which is governed by the Bose-Hubbard model, and then later for a
two-component fermionic mixture [Jör08, Sch08].
In nature there are of course more complex fermionic systems than the simple spin-

1/2 configuration of the electrons in a solid. Thus by adding a third distinguishable
fermion to the mixture one can study new phenomena which are related to high-
energy physics like color superfluidity or baryon formation [Rap07, Rap08, Wil07].
The first step towards such a system was done in our group in 2008 with the first re-
alization of a quantum degenerate three-component Fermi gas of 6Li atoms [Ott08].
There the three distinguishable fermions were realized by the three lowest Zeeman
sublevels of the electronic ground state. 6Li is a perfect candidate for such studies
since the two-body interactions between the different states all have broad Feshbach
resonances which overlap and thus the interaction between all the states can be
simultaneously tuned. In addition, for high magnetic fields the interactions between
the different states are approximately equal and thus the system has an almost
perfect SU(3) symmetry.
In the interesting regime of strong interactions however, a three-component mix-

ture is short-lived because inelastic three-body collisions1 then dominate which lead
to strong atom losses from the trap. To circumvent this inherent loss it was pro-
posed to put the three-component mixture in an optical lattice. Then so-called
Quantum-Zeno loss blocking should occur which suppresses tunneling of atoms onto
already doubly occupied sites and therefore stabilizes the sample [Dal09, Kan09].
The system is then stable on time scales which should be large enough to observe
phase transitions like the aforementioned color superfluid [Pri11] or the emergence
of off-site trions [Poh13]. In our experiment we want to investigate such a three-
component Fermi gas in a two-dimensional optical lattice. A sketch of our planned
preparation scheme can be seen in Figure 1.1. After laser cooling the atoms in a
magneto-optical trap (MOT), we transfer them into an optical dipole trap where
we do evaporative cooling to prepare a quantum degenerate two-component mix-
ture. Then we transfer the atoms into another optical dipole trap which is strongly
confined in the vertical direction and only weakly confined in the horizontal plane
and hence provides a quasi two-dimensional confinement. Ramping up the optical
lattice and transferring a fraction of the atoms into the third spin state using radio-
frequency transitions, we will then prepare a three-component Fermi gas in a 2D
optical lattice.
During this thesis, the optical setup to create the round, flat trapping potential

for the quasi 2D confinement was implemented and the properties of the trapping
potential were measured.

1These collisions lead to the formation of Efimov trimers which are an interesting field of research
in themselves and have also been studied in our group [Ott08, Wen09, Lom10b, Lom10a].
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Figure 1.1.: Scheme to create a three-component Fermi gas in a 2D optical
lattice. A two-component Fermi mixture is evaporatively cooled into
quantum degeneracy in a 3D optical dipole trap (1). The atoms are
then transferred into a second optical dipole trap with a large aspect
ratio (2), which leads to a quasi 2D confinement of the atoms. Then
the standing light waves are ramped up to create the optical lattice (3).
The picture is taken from [Rie10].

Outline of the thesis
This master thesis is structured as follows: It starts in Chapter 2 with a summary of
the basic theory of the interactions in ultracold Fermi gases, especially the concept of
the scattering length and Feshbach resonances. Since the thesis also deals with the
characterization of an optical dipole trap, the basics of optical dipole trapping are
reviewed in this chapter as well. Then in Chapter 3 the experimental apparatus is
described. At first the status quo at the beginning of the master thesis is summarized
before introducing the parts which were implemented in the course of this thesis.
This includes the optical setup we use to create the quasi 2D confining potential as
well as a characterization of the noise spectrum of the used laser, which is important
since laser noise can lead to heating in the trap. In Chapter 4 we then show how we
transfer atoms into this new trap and characterize it using various measurements.
The characterization includes the trap frequencies, the lifetime of the atoms in the
trap, the trap depth and the positional stability of the trap. Finally, Chapter 5
summarizes the most important results of this thesis and gives a short outlook on
what we hope to achieve in the future.







2. Theory of Ultracold Atoms and
Optical Trapping

This chapter provides a summary of the physics of ultracold Fermi gases and their
interactions with an emphasis on 6Li since we use it in our experiments. In addition,
the optical trapping technique needed to investigate such systems is explained.
At first in Section 2.1 the basic properties of an ideal Fermi gas are shortly sum-

marized. Then in Section 2.2 the concept of universality in ultracold scattering is
introduced and a derivation for the scattering length is given. Subsequently in Sec-
tion 2.3, the concept of a magnetic Feshbach resonance is introduced which allows
one to tune the scattering length. After that, the most important properties of
6Li are summarized in Section 2.4.
Finally in Section 2.5, the technique of optical trapping is introduced and the

basic formulas are derived, following the deduction given in [Gri00].

2.1. Ideal Fermi Gas
In quantum mechanics, the position and momentum of each particle is described
by a wave function corresponding to a probability density. Thus there is a position
uncertainty ∆x for the particle which is given by the width of the wave function and
is on the order of the de-Broglie wavelength λdB. This position uncertainty is coupled
to the momentum uncertainty ∆p via the Heisenberg uncertainty principle as ∆x ·
∆p ≥ ~/2 and thus ∆x behaves inversely to ∆p. In a thermal cloud the momentum
uncertainty can be interpreted as the width of the Maxwell-Boltzmann distribution
which becomes narrower with decreasing temperature. Thus when cooling down a
cloud of atoms, the width of the wave function of each particle gets larger until at
a certain temperature threshold the width of each individual wave function which
is on the order of λdB gets comparable to the inter-particle spacing d ∼ n−

1
3 at a

given density n. Then the wave functions of the individual particles start to overlap
and the atoms become indistinguishable. This leads to a breakdown of the classical
description of a thermal cloud and one enters the quantum degenerate regime. In
this regime, there is a fundamental difference between the statistics of fermions and
bosons. Whereas bosons obey Bose-Einstein statistics and tend to accumulate in the
ground state as T → 0 [Ein25], fermions are forbidden to occupy the same quantum
state due to the Pauli exclusion principle and obey Fermi-Dirac statistics described
by an occupation probability1

f (E, µ, T ) = 1
e(E−µ)/kBT + 1 (2.1)

1Here in its grand canonical formulation.
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for each quantum state which depends on the energy E, the chemical potential µ
and the temperature T of the system. For T = 0 this results in a step function where
each level is occupied by a single fermion up to the Fermi energy EF ≡ µ (T = 0)
and higher levels are not occupied. Thus the Fermi energy is the natural energy scale
for the system and one usually compares the energy, temperature and momentum
of a given system to its Fermi energy EF , the Fermi temperature TF = EF/kB and
the Fermi wave vector kF =

√
2mEF/~2.

In a harmonic trap with a trapping potential

V (x, y, z) = 1
2m

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (2.2)

the Fermi energy is given by [Gio08]

EF = (6N)1/3 ~ω̄ (2.3)

where N is the atom number and ω̄ = (ωxωyωz)1/3 is the mean trapping frequency.
At zero temperature, the spatial and momentum distribution is given by [Gio08]

n (r, T = 0) = 8N
π2xFyF zF

(
1− x2

x2
F

− y2

y2
F

− z2

z2
F

)3/2

(2.4)

n (p, T = 0) = 8N
π2p3

F

(
1− p2

p2
F

)3/2

(2.5)

where the Fermi radii iF are defined as EF = 0.5mω2
i i

2
F and pF = ~kF is the

Fermi momentum. Thus the spatial density profile of an ideal Fermi gas at zero
temperature has a rather flat top compared to the Gaussian profile of a thermal
cloud. This characteristic difference is used to detect the onset of quantum de-
generacy when cooling a Fermi gas. While the spatial density profile is affected by
anisotropies in the trapping potential, the momentum distribution remains isotropic.
Thus any anisotropies in the expansion after releasing the Fermi gas from the trap
can be attributed to interaction effects and are a signature of hydrodynamic behavior
[O’H02, Tre11].

2.2. Ultracold Scattering
To obtain detailed structural information in physics requires to perform scattering
experiments at high energies and thus small de-Broglie wavelengths λdB. Then the
scattered particles resolve the exact shape of the interaction potential and detailed
information of the potential can be gained. This is displayed for example in the
improved resolution of an electron microscope compared to a light microscope. Re-
versing this argument, if one wants to access a regime where the exact shape of the
short range interaction potential does not influence the scattering process, one has
to go to very small energies where the de-Broglie wavelength λdB is much larger than
the finite range of the interaction r0. Then the microscopic details of the short-range
interaction are no longer resolved and the long-range effects of the scattering can
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be described by a few effective parameters. All quantities which depend in turn on
these parameters are called universal since they are unaffected by the exact details
of the short-range physics.
In typical experiments with ultracold atoms we deal with the situation that we

have a very dilute gas with densities on the order of 1012-1015 cm−3 because at
lower densities elastic collision rates would be too small for efficient cooling and
at higher densities three body losses would dominate [Ket08]. Thus to be in the
quantum degenerate regime one needs large de-Broglie wavelengths λdB on the order
of 1µm which is typically achieved at temperatures between 100 nK and 50µK. The
interaction between neutral atoms is mediated via the short-ranged van-der-Waals
potential with a finite range r0 = rvdW. Since it scales as r−6, the range of the
potential is usually limited to values below 5 nm ∼ 100 a0, where a0 is the Bohr
radius. Therefore the condition λdB � rvdW is met very well and the scattering can
be almost perfectly described by a single parameter, the s-wave scattering length
a. This simplicity makes these system an ideal playground to test fundamental
theories with high precision. Another advantage of these ultracold systems is their
diluteness: as the inter-particle distance n−1/3 is usual several orders of magnitude
larger than the range of the interaction, this means that the atoms only interact via
two-body collisions which are fully described by the scattering length a. Thus also
many-body quantities like the mean energy only depend on a and are thus universal.
If furthermore the condition a� rdvW is met, then also the most shallow bound

state of two scattering atoms does not depend on the exact potential anymore but
its binding energy is solely determined by the scattering length a as

EB = ~2

ma2 . (2.6)

The universality allows to approximate the scattering between two particles almost
perfectly as a point-like contact interaction which can be described by an effective
δ-function potential Vcp = gδ (r) where the coupling strength is given by g = 4π~2

m
a

[Dal99]. Due to this simple description of the interaction, the Hamiltonians are
well known for these systems and thus they are ideal quantum simulators to test
fundamental theories in a controlled manner. In addition, the existence of mag-
netic Feshbach resonances allow to tune the scattering length to arbitrary values
by applying a homogeneous offset field and thus one can access different interaction
regime with the same apparatus, making ultracold systems a very powerful tool to
investigate theoretical models.

The s-wave scattering length
The derivation of the scattering length can be found in many textbooks e.g. [Sak11,
Bra03]. In the following, the important steps of the derivation are summarized and
the results are given.
Elastic scattering of two non-identical particles at low-energies can be described in

a non-relativistic framework by solving the time-independent Schrödinger equation[
− ~2

2mr

∇2 + V (r)
]
ψ (r) = Eψ (r) , (2.7)
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where r is the relative position andmr = m/2 is the reduced mass of the particles. If
one assumes a spherically symmetric potential V (r) with a potential drop-off faster
than 1/r, then the wave function ψ (r) satisfies the free-particle Schrödinger solution
in the long-distance limit r → ∞ and can be written as the sum of an incoming
plane wave ψinc and an outgoing spherical wave ψsc:

ψ (r) →
r→∞

ψinc (r) + ψsc (r) ∼ exp (ikz) + f (k, θ) exp (ikr)
r

. (2.8)

Here the incoming particles are considered to have energy Ek = ~2k2

2mr with momen-
tum k along the z-axis and the scattering amplitude f (k, θ) is independent of the
azimuthal angle φ due to the symmetry of the system. In the experiment, the long-
distance limit is satisfied when the relative distance |r| is much larger than the range
of the van der Waals potential, r � rvdW, which is very well met in ultracold atom
experiments. From the scattering amplitude one can then immediately calculate the
differential cross-section to be

dσ
dΩ = |f (k, θ) |2. (2.9)

As an ansatz to derive the scattering amplitude, one expands the wave function into
a series of Legendre polynomials

ψ (k, r, θ) =
∞∑
l=0

Rl (k, r)Pl (cos θ) . (2.10)

Putting this ansatz into the Schrödinger equation (2.7) then separates it into a radial
part and a spherical part. In the long-distance limit r →∞, the radial solutions for
Rl are identical with the free-particle solutions apart from phase shifts δl (k) which
display the effect of the short-ranged interaction

Rl (k, r) →
r→∞

Al (k)
kr

sin
[
kr − π

2 l + δl (k)
]
. (2.11)

In Figure 2.1 this phase shift for each partial wave ψl is displayed exemplary for the
case of ψ0. To obtain an expression for the scattering amplitude, one has to expand
the plane and spherical waves in equation (2.8) in a series of Legendre polynomials
as well and compare the coefficients with the ones obtained by putting equation
(2.11) into equation (2.10). This yields the following expression for the scattering
amplitude

f (k, θ) = 1
2ik

∞∑
l=0

(2l + 1)
(
e2iδl(k) − 1

)
Pl (cos θ) =

∞∑
l=0

fl (k, θ)Pl (cos θ) . (2.12)

By integrating the differential cross-section over the full solid angle, one obtains the
total cross-section

σ (k) =
∞∑
l=0

σl (k) = 4π
k2

∞∑
l=0

(2l + 1) sin2 δl (k) . (2.13)
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a

ψ

~1µm

~ 10 nm

Figure 2.1.: Illustration of the interaction induced phase shift of the wave
function. At low energies, the wave function at distances r � rvdW
is the free-particle solution which is shifted by a phase δ0. The inset
shows the short-range effect of the interaction on the wave function. The
scattering length a can then be understood as the distance by which the
free-particle solution is shifted with respect to the non-interacting case.
The picture is adapted from [Wei09].

For small momentum k � 1/rvdW and therefore low scattering energies, the phase
shifts scale as tan δl ∝ k2l+1 due to the centrifugal barrier2. Thus in the ultracold
regime, scattering processes with l > 0 are strongly suppressed and the interaction
can be described by only considering the l = 0 (s-wave) term. Since the zeroth order
Legendre polynomial P0 is independent of the angle θ, s-wave scattering is isotropic
which simplifies the interactions in ultracold systems a lot and makes it possible to
account for the effect of the interactions by a single parameter.
This universal parameter is the scattering length a which is defined as3

a = − lim
k·rvdW�1

tan δ0

k
. (2.14)

As can be seen in Figure 2.1, the scattering length can be interpreted as the distance
the free-particle solution of the Schrödinger equation is pushed out of the center.
The strength of the interaction is given by the amplitude of a and is for alkali atoms
usually on the order of 10 to 100a0, where a0 is the Bohr radius. Since the range rvdW
of the interaction is much smaller than the de-Broglie wavelength λdB, the details
of the potential are not probed by the interaction and thus for calculations one
can assume a point-like contact potential Vcp = gδ (r) where the coupling strength
is given by g = 4π~2

m
a [Dal99]. Hence, although the van-der-Waals interaction is

always attractive on the microscopic scale, the overall effect in the long-distance
limit can be either attractive or repulsive depending on the sign of the scattering
length.
2In 6Li , the centrifugal barrier is ' kB · 10 mK [Geh03].
3The truncation of the expansion k cot δ0 (k) = − 1

a + 1
2reffk

2 + O
(
k4) is correct if k is much

smaller than the effective range reff of the potential where reff is identical with rvdW up to a
numerical factor on the order of 1.
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From the scattering length one can then calculate the total cross-section of the
s-wave scattering for distinguishable particles as

σdist = 4πa2

1 + k2a2 . (2.15)

In the limit of weak interactions, ka � 1 holds and thus the total cross-section
becomes energy independent with

σdist = 4πa2. (2.16)

For resonantly enhanced interactions it is however also possible to reach the regime
where ka� 1. Then the total cross-section does not depend on the scattering length
anymore but becomes energy dependent with

σdist = 4π
k2 . (2.17)

This is also called the unitarity regime as the physics of the system can then be
described solely by the natural energy scale EF of the system4. Since for ultracold

π-θ

θki
-ki

-kf

kf

-kf

kf

ki
-ki

Figure 2.2.: Illustration of identical scattering. For indistinguishable particles
the two scattering processes are equivalent and thus the wave function
has to be symmetrized (anti-symmetrized) in the bosonic (fermionic)
case. The picture is adapted from [Dal99].

gases the atoms become indistinguishable, one is not able to differentiate anymore
between the two scattering processes depicted in Figure 2.2. Then the wave function
has to be symmetrized (anti-symmetrized) in the bosonic (fermionic) case which
leads to a differential cross-section

dσ
dΩ = |f (k, θ)± f (k, π − θ) |2, (2.18)

where the plus sign indicates the bosonic case and the minus sign the fermionic
case. Since the scattering amplitude is angle independent in s-wave scattering, the
scattering of identical bosons is enhanced as σboson = 4σdist while the scattering of
identical fermions completely vanishes with σfermion = 0. Therefore to have interac-
tions in ultracold Fermi gases, one either needs an additional atomic species or has
to use distinguishable internal states of the same atomic species.
4The attractive Bose gas is only stable on the repulsive side. There the Bose gas fermionizes
as the interaction increases and in the limit of a → ∞ can be mapped onto a non-interacting
Fermi gas.





2. Theory of Ultracold Atoms and Optical Trapping

Mean field interaction
If we want to calculate the interaction energy in a many-body system of N dis-
tinguishable atoms, we can use a mean field approach to approximate the effect.
Assuming a dilute gas and using the point-like contact potential, the mean field
interaction can be calculated as5

Umf = lim
V→0

1
V

N∑
i=1

∫
V
dr g δ (r− ri) = 4π~2

m
an, (2.19)

where V is the encased volume, ri is the position of the distinguishable atoms and
n = N

V
is the density of the cloud as depicted in Figure 2.3. Thus the interparticle

N

n=N/V
V

r
ri

Figure 2.3.: Illustration of the mean field interaction. The red particle experi-
ences an effect of the mean field mediated by the neighboring particles.
The picture is adapted from [Joc04].

interactions are attractive for a < 0 and repulsive for a > 0 on a macroscopic scale,
although the van der Waals interaction is always attractive on the microscopic scale.

2.3. Feshbach Resonances
Scattering of two particles can be understood in the terms of scattering channels.
Each scattering channel depends on the spin configuration of the colliding particles
and thus has a different interaction potential and continuum energy. Depending
on the incident energy of the particles, the channels can then be separated into so-
called open channels which are energetically allowed, and closed channels which are
energetically forbidden in the long-distance limit. This is depicted in Figure 2.4 (a)
where the incident energy is not large enough to reach the continuum of the closed
red channel.
When considering only scattering in the open channel, the scattering length is

fixed and depends on the atomic species. The scattering length is very sensitive if
there is a bound state closely below (above) the continuum. The scattering is then
resonantly enhanced and the scattering length becomes large and positive (large
and negative) [Lan81]. Thus to have a large scattering length, one has to use an
atomic species where there is a bound state close to the continuum. However, if one
5For indistinguishable, non-condensed particles one has to take also into account the exchange
symmetry which leads to a multiplicative factor of two for the mean field interaction [Gri96].
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Figure 2.4.: Basic concept of a magnetic Feshbach resonance. The resonance
occurs when the energy difference between a bound state of a closed
channel (red) and the incident energy in the scattering/open channel
(black) is tuned to zero via an applied magnetic offset field (a). The
scattering length is then resonantly enhanced, leading to a divergence
a→∞ at the resonance position B0 (b). When tuning the interaction
across the resonance, there is an avoided crossing between the open and
closed channel which adiabatically connects the molecular bound state
to the continuum (c). The picture is adapted from [Wen08].

considers also an additional closed channel and there is a coupling between the open
channel and a bound state in this closed channel, the particles can undergo a second-
order process, entering the bound state in the closed channel before coupling back
to the open channel. If there is a difference ∆µ in the magnetic moment between
the channels, one can tune the bound state energy to be close to the continuum of
the open channel by applying a homogeneous magnetic field (see Figure 2.4 (a)). As
in the resonantly enhanced case, this leads to a divergence of the scattering length
a at the resonance position B0 where the bound state is exactly at the zero energy
threshold and thus one can tune the interaction to arbitrary values6 (see Figure 2.4
(b)).
Such a resonant enhancement of the scattering due to a coupling of two channels

is called a Feshbach resonance7. The arbitrary tuning of the scattering length and
thus the interaction strength around a Feshbach resonance makes ultracold systems
a perfect playground to study theoretical models because it allows one to enter
different interaction regimes with the same experimental apparatus.
The effect of the Feshbach resonance on the scattering length is depicted in Figure

2.4 (b) and can be calculated as [Moe95]

a (B) = abg

(
1− ∆

B −B0

)
, (2.20)

where abg is the background scattering length of the open channel, B0 is the reso-
6Depending on the magnetic field stability in the experiment and the width of the resonance.
7H. Feshbach investigated this first in his studies on nuclear reactions [Fes58].
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nance position and ∆ is the width of the resonance, which depends on the coupling
strength g of the channels and the magnetic moment difference ∆µ. Thus by tuning
across the resonance, one can go from a repulsively to an attractively interacting
gas and vice versa.
The coupling dresses the energy of the particles and new ground states are formed

as superpositions of the continuum of the open channel and the bound state of the
closed channel as depicted in Figure 2.4 (c). This leads to an avoided crossing at
the resonance and one can adiabatically go from a molecular bound state to the
free-atom continuum when tuning the magnetic field slowly across the resonance.
More information on Feshbach resonances can also be found in [Chi10].

The BEC-BCS crossover
The transition from a molecular bound state to the free-atom continuum is known as
the BEC-BCS crossover and has been extensively studied [Bar04b, Kin04, Bar04a,
Chi04, Par05, Kin05, Zwi05].
The transition can be understood as a smooth process which connects two different

regimes (see Figure 2.5). On the repulsive side of the resonance, the ground state
consists of tightly bound molecules. Therefore below a critical temperature Tc, the
molecules can condense into a Bose-Einstein condensate, which is why this side of
the Feshbach resonance is also called the BEC side. On the attractive side of the
resonance, the ground state consists of free atoms. For weak attraction, the atoms
can form pairs in momentum space - so-called Cooper pairs - which then can become
superfluid below a critical temperature given by BCS theory [Bar57]. Therefore that
side of the Feshbach resonance is also known as the BCS side. On resonance, one
enters the unitarity regime where the size of the pairs becomes comparable to the
interparticle distance. Then the scattering length is not a meaningful quantity
anymore and all physics becomes universal, being only characterized by the natural
energy scale EF of the system.

Molecule Formation
To form molecules, one can tune the interaction close to the resonance on the BEC
side where the binding energy of the weak molecular state can be calculated as
[Pet04]

EB = ~2

ma2 . (2.21)

Three-body recombination, where the excess momentum is transferred to a third
particle, then leads to a population of these weakly bound molecules, whose size is
on the order of the scattering length a.
This equation only holds as long as the dimer size is much larger than the effective

range

reff =
(
mC6

~2

)1/4
(2.22)
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Figure 2.5.: Illustration of the BEC-BCS crossover. Tuning the interaction
strength via a Feshbach resonance, one can go smoothly from the BEC-
limit of tightly bound molecules to the BCS-limit of long-ranged Cooper
pairs, where the size of the pairs is much larger than the inter-particle
spacing. On resonance, one enters the unitarity regime where the pair
size is on the same order as the inter-particle spacing. The picture is
taken from [Ket08].

of the potential. It can be extended to lower values of a however by subtracting a
so-called mean scattering length ā from a which leads to [Gri93]

EB = ~2

m (a− ā)2 . (2.23)

For 6Li this correction can be calculated to be [Gri93, Joc04]

ā = Γ (3/4)
2
√

2 Γ (5/4)
reff ≈ 0.478reff ≈ 29.9 a0. (2.24)

This weakly bound state is of course not the vibrational ground state of the system
and thus the molecules can relax into deeper states, releasing a lot of binding energy
in the process. This leads ultimately to loss of atoms in the trap because the kinetic
energy acquired exceeds the trapping potential.
In a two-component Fermi gas however, these relaxation processes are highly

suppressed due to Pauli blocking since atom-dimer or dimer-dimer collisions always
involve at least two identical particles. The scattering properties of these collisions
were calculated in a series of papers by D. Petrov et al. [Pet03, Pet04, Pet05]. They
found that the scattering length of these atom-dimer or dimer-dimer collisions are
directly related to the atom-atom scattering length a via

aad = 0.6a, (2.25)
add = 1.2a, (2.26)

and that the relaxation rate constant αrel scales as

αrel =
a−3.33 atom-dimer
a−2.55 dimer-dimer

(2.27)
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with the atom-atom scattering length. Therefore both relaxation processes are
strongly suppressed close to the resonance, making the gas more stable. This is
not the case in bosonic gases where one has strong losses close to the resonance.
Thus in a Fermi gas one can prepare long-lived molecules which can then be cooled
down into a molecular BEC [Joc03, Zwi03, Gre03].

2.4. Properties of Lithium
In our experiment we use 6Li and thus this section gives a brief summary about the
important properties of 6Li. The information given here can be found in [Geh03,
Chi10].

Level structure
Lithium is an alkali atom and hence only has one valence electron with a total
electron spin S = 1/2. The fermionic isotope 6Li has a nuclear spin of I = 1.
At zero magnetic field, the total orbital angular momentum J = L + S couples to
the nuclear spin, making the total angular momentum F = J + I a good quantum
number and leads e.g. for the ground state to a hyperfine splitting into F = 1/2 and
F = 3/2. The level scheme including the hyperfine interaction can be seen in Figure

F=3/2

F=1/2

F=3/2

F=1/2

F=1/2

F=3/2

F=5/2

2 2S1/2

2 2P1/2

2 2P3/2

D2 = 670.977 nm

repumpercooler

228.2 MHz

26.1 MHz

4.4 MHz

Figure 2.6.: Level scheme of 6Li. The hyperfine structure of the excited state of
the D2-line is not resolved since the splitting is smaller than the natural
linewidth Γ of the transition. A closed cycle between the ground and
excited state - used for cooling and trapping - can be achieved using the
transitions labeled as cooler and repumper. The picture is taken from
[Boh12].

2.6. In our experiment we use the ground state 22S1/2 and the excited state 22P3/2 for
cooling and trapping. The electronic transition between these states is called the D2-
transition and has a wavelength of 670.977 nm, thus being in the visible regime. The
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ground state splits into the hyperfine states |22S1/2, F = 1/2〉 and |22S1/2, F = 3/2〉
with a separation of 228.2 MHz. The excited state splits into three sub-states which
are separated by 4.4 MHz. Because the separation of the excited state is smaller than
the natural linewidth Γ = 5.9 MHz of the D2-transition, the hyperfine structure is
not resolved and the atoms can relax from the excited states into both ground states.
Thus one needs two laser frequencies separated by 228.2 MHz - called cooler and

repumper - to create a closed cycle between the ground state and the excited
state. These transitions are then used to laser cool the atoms and trap them in
the magneto-optical trap (MOT) as explained in Section 3.1.3.
At zero magnetic field, the hyperfine states are degenerate in their magnetic sub-

levels mF = −F, ..., F . When applying a magnetic field however, the degeneracy is
removed as can be seen in Figure 2.7 for the ground state. For magnetic fields above
B ≈ 30 G, the electron spin S8 and the nuclear spin I decouple and thus F is not a
good quantum number anymore. The states then have to be described by the set of
quantum numbers |S = 1/2, I = 1,mS,mI〉 and one can see that the states separate
into two groups: the high-field seeking states |1〉-|3〉 with |mS = −1/2,mI = 0,±1〉,
which minimize their internal energy at high magnetic fields, and the low-field seek-
ing states |4〉-|6〉 with |mS = +1/2,mI = 0,±1〉 which minimize their internal energy
at low magnetic fields. Since the coupling of the electron spin to the magnetic field
is much larger than the coupling of the nuclear spin, the behavior at high magnetic
fields almost entirely depends on the orientation of the electron spin and thus the
states with identicalmS tune approximately parallel in respect to the magnetic field.
In the experiment, one operates usually at high magnetic fields B > 100 G and thus
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Figure 2.7.: Energy splitting of the ground state 22S1/2 in 6Li. At high
magnetic fields the electron spin S and the nuclear spin I decouple and
the states separate into the high-field seeking states |1〉-|3〉 and the low-
field seeking states |4〉-|6〉. We use the high-field seeking states in our
experiment since any binary mixture of these is stable if the magnetic
field is not close to zero.

one is deeply in the decoupled regime. Since binary mixtures of the low-field seeking
8For the ground state L = 0 and thus J = S.
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states |4〉-|6〉 can decay into the states |1〉-|3〉 via spin-changing collisions, we use
the high-field seeking states for our experiments. These are stable on the lifetimes
of our experiments and one can use radio-frequency (rf) pulses to drive transitions
between them (see Section 4.5.1).

Feshbach Resonances
When using the three lowest hyperfine states of 6Li, there are three different scat-
tering channels depending on the states of the colliding particles. This leads to
different scattering lengths a12, a13, a23 which tune slightly different with respect to
an external magnetic field. As can be seen in Figure 2.8, each channel supports
a broad Feshbach resonance below 1000 G which is experimentally accessible. The
graphs have been calculated using a coupled channel method where the position of
the |1〉-|2〉 resonance has been determined in our group using precise rf-spectroscopy
of weakly bound molecules [Zür13]. The results of these calculations are summa-
rized in Table 2.1. For the |1〉-|2〉 channel, there is also an additional resonance
at about 543 G which is very narrow and thus not often used in our experiments.
The background scattering length is very sensible whether the atoms collide in a

Scattering channel B0 [G] ∆ [G] abg [a0]
|1〉 |2〉 832.18 -262.3 -1582
|1〉 |3〉 689.68 -116.6 -1770
|2〉 |3〉 809.76 -200.3 -1642

Table 2.1.: Position B0, width ∆ and background scattering length abg of
the Feshbach resonances for the states |1〉, |2〉 and |3〉. The values
are obtained from calculations as explained in [Zür13]. The background
scattering length is valid above the resonance. Note that the position
of the zero-crossings in Figure 2.8 is not given by the simple equation
(2.20) as this equation only holds close to the resonance.

singlet or triplet configuration of their respective electron spins. In 6Li, the triplet
scattering length is enhanced because there is a virtual bound state slightly above
the continuum9. Therefore the triplet scattering length at is large and negative
with values of about at ∼ −2000 a0. The singlet scattering length as on the other
hand has no bound state close to the continuum and thus is only on the order of
as ∼ 40 a0. At low magnetic fields, the scattering states are in a superposition of
singlet and triplet states and thus their scattering length is small. As one goes to
higher magnetic fields, the contribution of the triplet state becomes stronger. This
explains the local minima of the scattering lengths aij below the resonance. At high
magnetic fields above the resonance, the scattering potentials are almost completely
governed by the electronic mS = −1/2 state of the two colliding atoms and thus
the scattering state is almost a pure triplet. Therefore one obtains large negative
background scattering lengths abg for 6Li above the resonance.
9A change of less than 10−3 of the potential depth would already cause the triplet scattering
length to change its sign [Joc04].
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Figure 2.8.: S-wave scattering length a in units of the Bohr radius a0 of 6Li
for all combinations of the three lowest hyperfine states. All
combinations aij have a broad Feshbach resonance below B = 1000 G.
The position of the |1〉 -|2〉 resonance was determined in our group
using precise rf-spectroscopy of weakly bound molecules [Zür13]. The
scattering lengths aij were then determined using a coupled-channel
calculation.

2.5. Optical Trapping

Cooling atoms down into the ultracold regime where the interaction is universal and
tunable via magnetic Feshbach resonances requires a trapping mechanism which ful-
fills the following conditions: it must not depend on magnetic fields since one needs
a magnetic offset field as a free parameter to control the interaction. Furthermore,
the heating introduced by the trapping has to be sufficiently low to not severely
limit the achievable temperature.

Far off-resonant optical dipole traps fulfill both these requirements. They rely
on the electric dipole interactions between the strong electric field of a laser beam
and the induced dipole moment in the neutral atoms. Compared to other trapping
methods like e.g. magnetic traps, this mechanism is quite weak and thus one has to
pre-cool the atoms before applying optical trapping.

To calculate the main properties of optical traps, we use a classical oscillator
model as derived in [Gri00]. This assumption provides a very good approximation
for atoms with a strong dipole allowed transition and when one can neglect any
saturation effects. In our case of 6Li as an alkali atom with a single valence electron,
this approach is valid since we are operating far away from resonance.

Although neutral atoms have no permanent dipole moment, the electric field E
of the laser induces a dipole moment p oscillating at the driving frequency ω. The
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usual complex notation for this is

E (r, t) = ê Ẽ (r) exp (−iωt) + c.c. (2.28)
p (r, t) = ê p̃ (r) exp (−iωt) + c.c., (2.29)

where ê is the unit polarization vector. The amplitude p̃ of the dipole moment is
connected to the electric field amplitude Ẽ by

p̃ = α (ω) Ẽ, (2.30)

where α is the complex polarizability which depends on the driving frequency ω.
The interaction potential of the induced dipole moment p in the driving field E

is then given by

Udip = −1
2 〈pE〉 = −< (α) |Ẽ (r) |2 = − 1

2ε0c
< (α) I (r) , (2.31)

where 〈 〉 denotes a time average over the rapid oscillations10 and I (r) = 2ε0c|Ẽ (r) |2
is the spatially dependent laser intensity. The factor 1/2 takes into account that
the dipole moment is only induced and not permanent. Thus the dipole potential
is directly related to the real part < (α) of the polarizability which describes the
in-phase component of the oscillation. It is also called the dispersive part since it
determines the phase shift the electric field experiences.
The dipole force acting on the atom

Fdip (r) = −∇Udip = 1
2ε0c
< (α)∇I (r) (2.32)

is thus proportional to the intensity gradient of the laser and is a conservative force.
Apart from feeling the dipole force, the oscillator also absorbs a power Pabs from

the driving field. In a quantum mechanical picture, this can be interpreted as a the
absorption and subsequent re-emission of photons with energy ~ω at a scattering
rate Γsc which is given by

Γsc = Pabs

~ω
= 〈ṗE〉

~ω
= 1

~ε0c
= (α) I (r) . (2.33)

Thus the scattering rate Γsc is directly connected to the imaginary part = (α) of the
polarizability which describes the out-of-phase component of the oscillation and is
related to absorption and subsequent re-emission of a photon. This leads to heating
in the trapped atomic cloud and thus sets a limit to the achievable temperature.
At very low trap depths this can also lead to a loss of atoms and thus a decreasing
lifetime. Therefore one wants to operate in a regime where the dipole potential is
still large enough for trapping but the scattering rate is already negligible.
To calculate the polarizability α we start by considering the atom in Lorentz’s

model of a classical oscillator. In this simple model the valence electron (mass me,
elementary charge e) is bound elastically to the atomic core with an eigenfrequency
10The averaging eliminates all terms with a factor e±2iωt.
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ω0 which corresponds to the optical transition frequency. The movement of the
electron can then be described by the equation of motion for a damped, driven
oscillator

ẍ+ Γωẋ+ ω2
0x = −eE (t)

me

, (2.34)

where Γω is a damping term due to the dipole radiation of the accelerated electron
and can be calculated by Larmor’s formula [Jac75]

Γω = e2ω2

6πε0mec3 . (2.35)

Solving this equation and considering that the dipole moment is just given by the
displacement of the charge p = ex, this yields for the polarizability

α (ω) = 6πε0c3 Γ
ω2

0

1
ω2

0 − ω2 − i (ω3/ω2
0) Γ , (2.36)

where we have introduced the on-resonance damping rate Γ ≡ Γω0 = (ω0/ω)2Γω.
Note that in a semiclassical approach with a two-level system, the damping rate
corresponds to the spontaneous decay rate of the excited state and is related to
the dipole matrix element between ground and excited state. However, for alkali
atoms the results obtained with the classical approximation are correct within a few
percent.
Using the derived expression for the polarizability and putting it into equations

(2.31) and (2.33), we obtain explicit expressions for the dipole potential Udip and
scattering rate Γsc

Udip (r) = 3πc2

2ω3
0

(
Γ
∆ + Γ

∆ + 2ω0

)
I (r) , (2.37)

Γsc (r) = 3πc2

2~ω3
0

(
ω

ω0

)3
(

Γ
∆ + Γ

∆ + 2ω0

)2

I (r) , (2.38)

where ∆ = ω − ω0 is the detuning with respect to the resonance. Thus both the
dipole potential and the scattering rate scale linearly with the applied laser power.
If the laser is tuned relatively close to the resonance such that |∆| � ω0, one can
neglect the second term and see that the potential scales as Udip ∝ 1/∆ whereas
the scattering rate scales as Γsc ∝ 1/∆2. This makes it possible to have sufficiently
low heating rates while still being able to have a strong enough trapping potential
when using a far detuned laser at high power. In this approximation, the sign of
the potential only depends on the sign of the detuning and the two possible trap
configurations can be seen in Figure 2.9. For red detuned light (∆ < 0) the dipole
potential is negative and thus the atoms are trapped in the intensity maximum of
the beam. Thus by simply focusing a red detuned laser beam with a Gaussian
intensity distribution one can create an optical trap. For blue detuned light (∆ > 0)
on the other hand, the dipole potential is positive and the atoms are trapped in an
intensity minimum. Thus to achieve e.g. trapping of atoms in a plane, one requires
a ’donut’ shaped beam which is harder to achieve than a Gaussian beam. Therefore
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Figure 2.9.: Illustration of red and blue detuned optical traps. The color
shaded areas show the dipole potentials of a red (a) and blue (b) detuned
optical trap with a trap depth U0. The atoms (black dots) are always
pulled towards the minimum of the dipole potential. If the energy of the
atoms E = kBT is much smaller than the trap depth U0, the atoms only
probe the center of the trap and one can use harmonic approximations.
The picture is adapted from [Gri00].

blue detuned lasers are often used as optical plugs to prevent atoms from occupying
certain areas. In our experiment we use a red detuned laser at wavelength of 1064 nm
which is far detuned from the atomic transition frequency at about 671 nm of 6Li.
Therefore our detuning |∆| ≈ ω0/2 is on the order of the resonance frequency and
thus dropping the second term would introduce an error of about 20 % for the dipole
potential. Since this large detuning decreases the trap depth considerably, we have
to compensate this by having a very high laser power of about 200 W.
In our dipole traps we use focussed Gaussian beams to create the confinement.

Taking the z-axis as the line of propagation, their intensity profile is given by

I (x, y, z) = 2P
π wx(z)wy(z) exp

[
−2 x2

w2
x(z) − 2 y2

w2
y(z)

]
, (2.39)

with

wi(z) = w0,i

√√√√1 +
(
z

zR,i

)2

. (2.40)

Here wi denotes the 1/e2 radii of the beam, the beam waist w0,i defines the minimal
radii at the focus and the Rayleigh lengths zR,i = πw2

0,i/λ define the distances from
the focus where the according beam waist has increased by a factor of

√
2. In Figure

2.10 a) this case is depicted. The trapping volume is then basically determined by
the beam waists wx,y and the Rayleigh length zR = min [zR,x, zR,y]. For typical
beam sizes the Rayleigh length is always larger than the beam waists and thus the
confinement along the propagation axis of the beam is weakest. However, one can
improve the axial confinement by crossing two beams of perpendicular polarization
under an angle 2φ which is depicted in Figure 2.10 b). Then the axial confinement
is determined by the overlap length l ≈ 2wy/ sinφ given that l < zR and one can
achieve a better confinement. In the experiment one often realizes this by recycling
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the beam to cross it with itself. This also increases the power of the laser effectively
by a factor of two, thus improving the achievable trap depths. As one can see in

a)

b)

wx
wy

zR

d=λ/2sinφ

c)

wx

wy

l2φ

k1

k2

z

y

Figure 2.10.: Illustration of different type of red-detuned optical traps. a)
Single beam trap where the atoms are confined at the focus of a Gaus-
sian beam. The trapping volume is determined by the beam waists
wx,y in radial direction and the Rayleigh length zR in axial direction.
b) A crossed beam trap where the beams have perpendicular polar-
ization enhances the axial confinement to the overlap length l. c) For
identical polarizations in the beams, the crossed beam trap creates
an interference pattern where the distance between adjacent trap sites
is determined by the crossing angle 2φ. The picture is adapted from
[Boh12].

Figure 2.9, in our experiments we usually have the condition that the thermal energy
kBT of the atoms is much smaller than the trap depth U0. The atoms then probe
only a small volume of the trap and one can apply a harmonic approximation to
calculate the energy levels. This then leads to the form

Udip ≈ −U0

1− 2
(

x

w0,x

)2

− 2
(

y

w0,y

)2

−
(
z

zR

)2
 , (2.41)

where U0 is the trap depth at the center which is proportional to the applied laser
power. This has the form of a harmonic oscillator where the level spacings ~ωi are
given by the trap frequencies

ωx,y =
√√√√ 4U0

mw2
0,x,y

and ωz =
√

2U0

mz2
R

. (2.42)

Since U0 scales linearly with the laser power P , this implies that ωi ∝
√
P .

Further away from the center of the trap the harmonic approximation is not good
anymore. There the trap frequencies changes which has the effect that the levels
closer to the edge of the trap are spaced by less than ~ω.
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Confinement in 2D and 1D

In the harmonic approximation, the axes are decoupled and the energy of each atom
[Sch04]

Eho = ~ωx
(
nx + 1

2

)
+ ~ωy

(
ny + 1

2

)
+ ~ωz

(
nz + 1

2

)
(2.43)

depends only on the trap level ni it occupies in each axis i. Thus by introducing
large aspect ratios for the trap frequencies and limiting the number of atoms in the
trap, one can achieve conditions where the dimensionality of the system is effectively
reduced.
Since we deal with identical fermions, each trap level can be occupied only by a

single fermion. At zero temperature, this has the effect that N identical atoms will
occupy the N energetically lowest trap states up to the Fermi energy EF . However
finite temperature effects and interactions between the different spin states in the
trap leads to excitations and thus also higher energy levels can be occupied.
In the case of a single beam trap where the axial trap frequency is much weaker

than the radial trap frequencies (ωz � ωx,y) and for temperatures kBT � ~ωx,y,
this means that as long as the atom number N satisfies the condition

~ωzN � ~min [ωx, ωy] (2.44)

the atoms will only be excited in the axial direction and thus the system can be
regarded as quasi one-dimensional. Therefore the maximal number of atoms while
still being in the 1D regime is given by the aspect ratio Nmax � min [ωx, ωy] /ωz.
In the case of an optical lattice (see Section 2.5.1), one can achieve that the

confinement along one axis e.g. the z-axis, is much stronger than in the other axes
and hence ωx,y � ωz. For temperatures kBT � ~ωz and demanding that the atoms
are only excited in x- and y-direction to have a quasi two-dimensional system leads
to the condition

~ωxnx + ~ωyny � ~ωz, (2.45)
where the maximal number of atoms is now given by Nmax = nx · ny. This limit is
reached for

Nmax �
ω2
z

2ωxωz
. (2.46)

Hence the achievable number of atoms depends also in the 2D case only on the ratio
of the trapping frequencies.

2.5.1. Crossed Beam Traps
Starting with the simple single-beam dipole trap derived above, the possibility of
creating interference patterns in the intensity profile by using additional beams with
identical polarization provides a tool to create all sorts of trap structures.
Interference occurs because the overall intensity of two laser beams is given by

Itot ∝ |Ẽ1 + Ẽ2|2 (2.47)

and thus depends on the relative phase between the two electric fields. In Figure
2.10 c) the general case of two Gaussian beams with identical power propagating
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along k1 and k2 is depicted. If the crossing angle is again 2φ, this yields the total
intensity

Itot ∝ I0|eik(cosφz−sin Φy) + eik(cosφz+sinφy)|2 = 4I0 cos2
(

2πy
λ sinφ

)
, (2.48)

where k = 2π/λ is the wave vector and I0 is the intensity of a single beam. Since
the trap depth is proportional to the intensity this leads directly to a periodical trap
structure along the y-axis of the form

U0 (y) ∝ cos2
(
πy

d

)
, (2.49)

where
d = λ

2 sinφ (2.50)

is the spacing between adjacent trap sites. Note that the trap depth of each site
is four times as large as that of a single beam trap. For the case of different beam
intensities the minima are not completely dark anymore and thus the potential wall
between adjacent sites is reduced.

Optical Lattices

In the case of retro-reflected beams (φ = 90 ◦) one obtains a standing wave pattern
which minimizes the spacing to d = λ/2 and is called an optical lattice. This can
be seen in Figure 2.11 a). Since the beam waists wi and the Rayleigh length zR are
usually much larger than the wavelength, this allows for very tight traps and thus
large trapping frequencies. Therefore optical lattices are perfectly suited to create
the conditions required to reduce the dimensionality of a system. Superimposing
several of these standing waves, one can then e.g. create structures like arrays of
one-dimensional tubes or a three-dimensional lattice where each site is effectively
zero-dimensional (see Figure 2.11). Especially the latter ones allow to investigate
theoretical models from solid state physics and are thus a main field of research.

2.5.2. Heating in Optical Traps
Heating in dipole traps is a major concern since most of the interesting physics in
lattices happens at temperatures far below the Fermi temperature TF = EF/kB

11

and thus heating can impose severe limitations to the accessible regimes. The fun-
damental mechanism of heating in a dipole trap is the spontaneous scattering of
trap photons. As can be seen from equation (2.38), when using the approximation
|∆| � ω0 the scattering rate Γsc in the center of the trap directly relates to the trap
depth U0 as

Γsc = Γ
~∆ U0. (2.51)

As already mentioned, it is therefore advantageous to be far detuned from resonance
to have low heating rates. However, one can also see that in optical lattices the
11It denotes the energy of the highest occupied state at T = 0.
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a) b) c) 

Figure 2.11.: Illustration of the different kind of lattice structures. Assuming
Gaussian beams, one retro-reflected beam creates a one-dimensional
lattice of pancake shaped traps (a). Two orthogonal retro-reflected
beams create a two-dimensional array of cigar shaped traps (b). Us-
ing three orthogonal standing waves then creates a three-dimensional
optical lattice (c). The picture is taken from [Boh12].

problem increases as well since the trap depth U0 is enhanced by interference effects
and thus the scattering rate is increased as well.
Introducing a mean photon scattering rate Γ̄sc across the trap, this leads to a

linear heating rate of
Ṫ = 1

3TrecΓ̄sc, (2.52)

where Trec = ~2k2/ (2mkB) is the recoil temperature. Thus for lighter alkali atoms
like 6Li this heating is more pronounced due to their larger recoil temperature.
Apart from this fundamental source, heating can also occur due to technical

reasons like intensity fluctuations or pointing instabilities in the trapping beams
[Geh98]. These mechanisms lead to heating which strongly increases for larger trap
frequencies. Therefore they can be a limiting factor in lattice experiments, where
the trap frequencies can be on the order of 100 kHz and thus one relies on low-noise
laser sources and very stable optics to create the lattices.
In Section 3.2.2, the heating caused by intensity fluctuations is explained in more

detail and its influence compared to the photon scattering is estimated for our
experimental setup.







3. Experimental Setup
Conducting experiments on ultracold atoms requires to first trap a sample of atoms
and then use a sequence of cooling schemes to enter the quantum degenerate regime.
In this chapter our preparation of such an ultracold atomic sample is summarized
and the main features of our apparatus are explained.
A detailed description of the status quo of our experiment at the beginning of this

thesis can be found in the Diploma Theses of Johanna Bohn [Boh12], Phillip Simon
[Sim10] and Martin Ries [Rie10]. Up to this point, a mixture of atoms in states
|1〉 and |2〉 inside a 3D optical dipole trap had been evaporatively cooled both into
a quantum degenerate Fermi gas (DFG) and a molecular Bose-Einstein condensate
(mBEC). All the required steps to achieve this are briefly reviewed in Section 3.1.
Subsequently the newly added setup to create the pancake shaped dipole traps which
provide the 2D confinement in the optical lattice is introduced in detail in Section
3.2. At last, our rf-setup which is used to transfer atoms between different hyperfine
states is described in Section 3.3 and all our current imaging possibilities are listed
in Section 3.4.

3.1. Preparation of an Ultracold Fermi Gas
In the following, we summarize the basic characteristics of our apparatus as well
as explain the required steps to prepare an ultracold Fermi gas as depicted in the
timing graph in Figure 3.1.

3.1.1. Experimental Control
All devices that need to be controlled during an experimental cycle are addressed
with a combination of digital and analog channels. To regulate these channels we
use an ADwin Pro II real-time control system with 32 digital outputs, 16 analog
outputs and 8 analog inputs.
Using analog-digital converters (ADC) and digital-analog converters (DAC), one

can use the analog input channels to provide a digital PID-feedback to the analog
output channels. The speed of the ADC’s and DAC’s sets the limit on the achievable
bandwidth to 100 kHz, implying that each analog channel is updated every 10µs. In
contrast, the digital channels have a bandwidth of 1 MHz and can thus be updated
each µs.
The ADwin Pro II receives its timing table for all the channels from a LabView

user interface via Ethernet. This user interface also controls the cameras and eval-
uates their data. The whole setup is such that one can do automated runs while
simultaneously analyzing the data. More details on the experimental control can
also be found e.g. in [Lom08, Zür09].
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Figure 3.1.: Illustration of the timing graph to produce an ultracold Fermi
gas. At the top the main steps are shown: the loading of the MOT, the
transfer into the optical dipole trap and subsequent evaporative cooling
of the atomic cloud. This is then the starting point for our measure-
ments after which we can investigate the density profile of the cloud
either in time-of-flight (TOF) or in-situ absorption imaging. Depend-
ing at which magnetic offset field the final evaporation is performed,
one ends up either with a molecular BEC (B ≈ 795 G) or a degenerate
Fermi gas (B ≈ 300 G). Note that this is a simplification of our exper-
imental sequence and that the times and amplitudes do not scale and
just show the qualitative behavior.
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3.1.2. Vacuum, Oven & Experiment Chamber
Cooling atoms down to ultracold temperatures requires an ultra high vacuum (UHV)
since any collisions with thermal background gas would eject atoms from the trap
immediately. A drawing of our vacuum setup can be seen in Figure 3.2. The experi-
ment chamber is connected to the oven via a differential pumping stage1 to suppress
any negative effect of the higher pressure inside the oven chamber. This leads to a
pressure Pexp ≤ 10−11 mbar inside our experiment chamber and a vacuum limited
lifetime of 23 min in the magneto-optical trap (MOT). Therefore on the timescale
of our experiments (∼ 10 s) we can neglect any losses due to the background gas.
The experiment chamber is pumped by a titanium sublimation pump (VARIAN) in
addition with an ion-pump (VARIAN StarCell 75) to pump non-reactive gases like
He or Ar. In addition, the octagonal chamber itself is coated from the inside with
a so-called ’Non Evaporable Getter coating’ (NEG) from GSI, which consists of a
TiZrV alloy. It acts as another getter surface and also prevents outgassing from the
octagon walls, thus further reducing the pressure inside the experiment chamber.
The oven chamber is pumped with another titanium sublimation pump (VARIAN)

1

2

3

5

4 4

5

Figure 3.2.: The vacuum chamber. 6Li is heated up to ∼ 350 ◦C in the oven
(1). This produces a flux of atoms going through the Zeeman slower
(2) to the experiment chamber (3). There, the atoms are first trapped
in a MOT and later transferred to optical traps. Six viewports on the
side of the spherical octagon and two re-entrant viewports on its top
and bottom allow optical access to the experiment. The two towers
(4) provide the gettering surfaces for the titanium sublimator pumps as
well as connections to the ion pumps (5). The picture is adapted from
[Rie10].

and a slightly smaller ion-pump (VARIAN StarCell 40). The pressure at the oven is
Poven ≈ 3 ·10−11 mbar and it is connected to the experiment chamber via the Zeeman
slower tube which also acts as a differential pumping stage.
The oven itself is filled with a few grams of 6Li and operated at Toven = 350 ◦C,

1The differential pumping stage is provided by the Zeeman slower tube.
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well above the melting point of T ≈ 180 ◦C. To block the atomic flux from the oven,
a mechanical shutter can be rotated into the atomic beam path.
The experiment chamber itself is a spherical octagon which is constructed with

non-magnetic steel. This is important because one does not want any magnetization
disturbing the magnetic offset fields needed to tune the interactions. For optical ac-
cess, the chamber has six viewports on the sides and two re-entrant viewports at the
top and bottom. This enables us to shine in all the necessary beams for the magneto-
optical trapping (MOT), optical trapping and imaging. The side viewports have a
numerical aperture of NAhor = 0.15 and therefore limit the theoretical maximal
achievable resolution to dhormin = 0.61λ

NA = 2.78µm (λ = 671 nm, Rayleigh criterium).
As one can see in Figure 3.3, the vertical viewports are much closer to the center
of the chamber and thereby provide a larger numerical aperture of NAvert = 0.88.
In comparison, this leads to a maximal achievable resolution of dvertmin = 465 nm. We
want to use this in the future when we put in a new objective with a numerical
aperture of NA = 0.6 which was designed in our group [Ser11] and has been tested
in a soon to be published master thesis [Ber13]. For λ = 671 nm, the new objective
was tested to have at least2 a resolution of dhormin = 1.01µm.
As one can see in Figure 3.3, the design of the chamber is also such that the coils

which produce the homogeneous magnetic offset field can be placed very close to
the atoms. This means that we do not need that many windings in the coil (30
windings at a current of 200 A), which reduces its inductivity and thus accelerates
any switching processes during an experiment cycle.
More information on the vacuum chamber or the oven can also be found in [Rie10].

3.1.3. Laser Cooling and Magneto-Optical Trapping
In order to prepare ultracold atoms, the hot atomic flux coming from the oven has
to be cooled down low enough to allow for trapping. The technique to do this and
the first trapping and cooling step is explained in the following.

Zeeman Slower

Since the atoms emerging from the oven have an average velocity v̄ ≈ 1500 m/s,
but the maximum capture velocity in the magneto-optical trap (MOT) is vcapture ≈
50 m/s, they have to be slowed down before entering the experiment chamber.
This can be done by decelerating the atoms with a resonant laser beam which is

directed opposite to the flux of atoms. This so-called laser cooling can be understood
quite simply by considering the atom as a two-level system3 described by a ground
state |g〉 and an excited state |e〉 (see e.g. [Met99]). When getting excited by a laser
photon to state |e〉, the atom absorbs the photon momentum pλ which is directed
2The calculated resolution is 680 nm. However the pinhole used to measure the point-spread-
function had a size of 650 nm which is on the same order and thus affects the measurement
negatively.

3In the experiment, this condition is not always fulfilled and one has to consider additional atomic
energy levels.
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Figure 3.3.: Vertical cut through a drawing of the experiment chamber.
The MOT coils (red) produce the anti-Helmholtz magnetic configura-
tion needed for trapping in the MOT. By switching the current flow
direction, they can also be used to compensate gravitation during ex-
periments in the optical traps. The Feshbach coils (green) produce the
strong magnetic offset field needed to tune the interaction via Feshbach
resonances. They are mounted very close to the atoms to reduce the
required currents. The picture is taken from [Rie10].

opposite to the atom’s initial momentum patom. Spontaneous emission of a photon
after some lifetime τ in the excited state |e〉 then leads to a decay of the atom back
into the ground state |g〉. Since this spontaneous process has no preferred direction
to emit the photon, the experienced recoil −pλ is randomly distributed and thus
evens out when averaging over many of these events. Therefore the atom will only
add up the directed recoil from absorbing the laser photons and thus will slow down4.
This effect is known as the spontaneous light force and can be described by [Met99]

〈F 〉 = ~kΓsc, (3.1)

where Γsc is the scattering rate of photons and k is the momentum of the absorbed
photon. The scattering rate depends on the linewidth γ of the excited state, the
intensity saturation s0 ≡ I/Is and the detuning δ of the laser from the resonance
frequency as follows [Met99]

Γsc = s0γ/2
1 + s0 +

(
2δ
γ

)2 . (3.2)

Therefore, to have a large scattering rate and thus a strong deceleration, one needs
to be in resonance (δ = 0) and have enough power to saturate the transition (s0 > 1).
Because the atoms move towards the laser source, one also has to consider the

Doppler shift δDoppler (v) the atoms experience. This requires the laser light to be
red-detuned to the transition by a detuning δLaser. However if the atoms are initially
in resonance to the transition, the deceleration would quickly move them out of
4In fact it makes a jittering movement, since the spontaneous emission can be seen as a random
walk process perpendicular to the beam [Jof93].
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resonance leading to non-efficient cooling. One can compensate for this effect by
applying a spatially varying magnetic field which introduces an additional spatially
dependent Zeeman shift δZeeman (x). Thus when taking all effects into account, one
can satisfy the resonance condition

0 ≡ δLaser + δDoppler + δZeeman (3.3)

along the whole length of the slower and achieve an efficient deceleration. Due to
the use of the Zeeman shift, this is called a Zeeman slower.
In our setup we use a decreasing field configuration for the Zeeman slower. This

has the advantage that the additional magnetic fields due to the slower are small at
the place of the atoms but the disadvantage that the laser light is not far detuned
from the resonance frequency which can cause unwanted excitations during the MOT
trapping. An additional advantage of this slower configuration is that we can use
the magnetic field of the MOT coils to provide the last part of the slower field. This
makes the Zeeman slower more compact and we capture the atoms closer to the end
of the slower where their expansion perpendicular to the slower axis is smaller.
More information on the Zeeman slower can be found in [Sim10].

Magneto Optical Trap (MOT)

The slow atoms entering the experiment chamber are then trapped using a magneto-
optical trap (MOT). The principle of MOT trapping is as follows: shining in per-
pendicular, counter-propagating near-resonant laser beams from all three directions
damps down the movement of the atoms, thus cooling them. Such a configuration is
called an optical molasses and its basic properties can be found in many textbooks
e.g. [Met99]. Although optical molasses provide velocity dependent cooling of the
atoms, there is no spatial confinement and thus the atoms can move out of the
overlap of the beams and are lost from the trap. Therefore one needs an additional
spatial confinement which is provided by applying a magnetic field gradient (see
Figure 3.4 a)). The magnetic field gradient splits the energy levels of different mag-
netic sublevels mJ and thus allows for spatially dependent absorption of photons.
The basic principle of the 1D case can be seen in Figure 3.4 b). In a two-level sys-
tem, the excited state |e〉 splits into three different magnetic sublevels mJ = 0,±1
which tune differently in respect to the magnetic field gradient. Because we work in
a local spin picture and the magnetic field and thus the quantization axis changes
its sign at B = 0, the energy of the mJ = −1 excited state always decreases with
increasing magnetic field amplitude. The near-resonant lasers have a detuning δ0
and polarization σ− thus allowing for transitions from the ground state |g,mJ = 0〉
to the excited state |e,mJ = −1〉. When an atom now moves out of the trap center
to the left, the laser beam coming from the left becomes resonant at z = −Rc thus
pushing the atom back towards the center of the trap. Although this laser is also
resonant at z = +Rc, it does not effect the atoms there because the quantization
axis changes at B = 0 and thus the beam is seen from atoms on the right side as
σ+-polarized. For more details on this one can again refer to [Met99].
Thus the combination of an optical molasse with a magnetic field gradient provides

the first step to effectively trap and cool our atoms into the sub mK regime. The
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a) b) 

Figure 3.4.: Basic principles of a MOT. a) Six laser beams in combination with
two coils in anti-Helmholtz configuration supply the spatial confinement
and cooling. b) A magnetic gradient splits the magnetic sublevels of the
excited state. At the center of the trap the magnetic field is zero and
hence the quantization axis changes. This has the effect that the atomic
transition becomes resonant with the laser at positions ±Rc. Since the
atom can only absorb light with the correct circular polarization, this
leads to a net force which is directed towards the center of the trap.
The picture is adapted from [Rie10, Boh12].

achievable temperature in the MOT is limited by the Doppler limit TD [Met99]. In
our case of 6Li, we achieve typical final temperatures on the order of about 300µK
in the MOT which is close to the Doppler limit of TD = 137.6µK. More information
on the performance of the MOT can be found in [Rie10].

Optical Setup
6Li is not a simple two-level system because after being excited to the |22P3/2〉 state5,
the atoms can relax into the |22S1/2F = 1/2〉, as well as into the |22S1/2F = 3/2〉
ground state6. Therefore one needs two laser frequencies, a cooler (|g, F = 3/2〉 →
|e〉) and a repumper (|g, F = 1/2〉 → |e〉) to address both transitions. The hyperfine
splitting between the ground states is approximately 228 MHz and can be achieved
by shifting the cooler (repumper) laser light by −114 MHz (+114 MHz) with an
acousto-optic modulator (AOM).
We produce all the near-resonant laser light required for laser cooling and MOT

trapping on a separate optical table using a TOPTICA TA Pro, consisting of a
grating stabilized diode laser [Ric95] which seeds a tapered amplifier and provides
an output power of approximately 350 mW with a linewidth of less than 1 MHz.
The frequency of the laser is stabilized using a beat offset lock to a frequency refer-
ence. This reference is a TOPTICA DL 100 which is stabilized using Doppler-free
frequency-modulation spectroscopy of 6Li-vapor [Ser07].
5The hyperfine states of the excited state are not resolved since their splitting is smaller than the
natural linewidth of the transition.

6The ratio is 1:2.
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The output beam from the TA is then split into two beams which are subsequently
shifted by 228 MHz with respect to each other using the first order diffraction of two
AOMs to allow for a cooler and a repumper beam. Each of these beams is then split
into three separate beams for the MOT and one additional beam for the Zeeman
slower which is again shifted by an AOM. The cooler and repumper beams are then
overlapped again before coupling them into polarization maintaining single-mode
fibers which link the optical table to the experiment table. The whole optical setup
is described in detail in [Rie10]. We create the counterpropagating MOT beams

Imaging

MOT

to camera

FiberPOutcoupler λ/4-waveplate

Mirror MOXTEKP
refl.Ppolarizer

PBS

ExperimentPChamber

σ + σσ - -

Figure 3.5.: Sketch of the Imaging/MOT outcoupler. The imaging and MOT
beam have perpendicular linear polarization and are overlapped using a
polarizing beam splitter (PBS). Before entering the experiment cham-
ber, the beams pass a λ/4-waveplate , resulting in perpendicular cir-
cular polarizations for the beams. After the chamber, an additional
λ/4-waveplate undoes this transformation and the beams are separated
using a MOXTEK reflective polarizer, transmitting the imaging beam
but reflecting the MOT beam. Passing the λ/4-waveplate again on its
way back, the MOT beam has then the correct circular polarization for
the atoms in the MOT.

via reflection using a combination of a λ/4-waveplate and a MOXTEK reflective
polarizer. This is done because we also want to image along the MOT axes and
hence need to separate the imaging beam from the MOT beam. A sketch and
explanation of our outcoupler setup can be seen in Figure 3.5.

MOT coils

The magnetic field gradient for the MOT is generated via two coils in anti-Helmholtz
configuration which are directly mounted on top and bottom of the experiment
chamber (see Figure 3.3). Each of the coils consists of four stacked coils with 25
windings each. Therefore the MOT coils have a larger inductivity compared to the
Feshbach coils thus making any switching process slower. To avoid overheating,
the coils are glued with thermally conductive epoxy onto water cooled copper heat
sinks. The current direction and thus the gradient can be reversed using a logical
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circuit. Thereby we can use the MOT coils later in the experiment to compensate
the gravitational force on the atoms by applying an appropriate gradient.
For more information on the coils, one can again refer to [Rie10].

3.1.4. Transfer into the Optical Dipole Trap and Evaporative
Cooling

After cooling down the atoms in the MOT to several hundred µK, we have to transfer
them into an optical dipole trap (ODT). It relies on the conservative dipole force in
an electrical field and its theory is described in more detail in Section 2.5. Since the
far off resonant light does not get scattered, one does not heat up the atoms and
thus can apply further cooling.
As our source for the far off-resonant light, we use a diode pumped single-mode,

linearly polarized Ytterbium fiber laser (IPG Photonics) with an output power of
200 W. It is not single mode in frequency space which degrades its noise charac-
teristics (see Section 3.2.2) but plays no role in our application. We use crossed,
elliptical beams to create a surfboard shaped trap with an optical setup which is
shown in Figure 3.8 and described in detail in [Boh12].
The transfer from the MOT into the ODT is done as follows: 1 ms before the

dipole trap is turned on, the repumper light is turned off and the intensity in
the cooler beam is reduced. Thereby the atoms accumulate in the ground state
|22S1/2F = 1/2〉, thus providing us with atoms in state |1〉 and |2〉 when increasing
the magnetic offset field during evaporation. Simultaneously we use the Feshbach
coils in anti-Helmholtz configuration to produce a steeper MOT gradient, thus com-
pressing the MOT and allowing for a better overlap of the traps. Then the dipole
trap laser is switch on to 200 W to begin the transfer. At this high power, thermal
lensing occurs which shifts the trap and thus the position of the ODT at high power
does not coincide with the position at low power. In addition, the position of the
zero-crossing of the Feshbach gradient does not coincide with the final position of
the dipole trap. Therefore the position of the MOT has to be moved during the
transfer. For this purpose we implemented several features. To shift the MOT po-
sition vertically, a parallel circuit was added to the lower coil to ’steal’ current and
thus move the trap center. In the horizontal plane, we can use the last Zeeman
slower coil to shift the position along the slower axis and an additional coil at the
viewport where the dipole trap beam enters the chamber to shift the MOT along
the dipole trap axis. This control in all three axes then enables us to overlap the
traps satisfyingly during the transfer.
After the transfer the power in the dipole trap laser is reduced to 40 W which

then shifts the dipole trap to its final position. In total, this allows us to transfer
about 1 % of the atoms into the dipole trap which leaves us about 107 atoms to start
the further cooling process.

Evaporative Cooling
The cooling mechanism of choice is so-called evaporative cooling. Its basic idea
is very simple: the atoms in a thermal cloud have a Maxwell-Boltzmann velocity
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distribution and the temperature of the cloud is connected to the mean velocity
of the gas. Hence by removing the fastest (and therefore most energetic) atoms
in the cloud, one reduces the mean velocity of the remaining atoms. When given
time to re-thermalize via collisions, the atoms then again have a Maxwell-Boltzmann
velocity distribution but now at a lower temperature. Hence by spilling fast atoms
from the trap in a controlled manner and giving the cloud time to re-thermalize,
one can cool down the cloud into the ultracold regime at the cost of atom number.
In the experiment, the spilling is done by lowering the trap depth via the applied

laser power. The laser power can be monitored with the help of two photodiodes
which collect the transmitted light behind a mirror (see Figure 3.8) and is stabilized
using a PID-feedback which controls the diffraction efficiency of two perpendicularly
crossed AOMs. To allow for fast re-thermalization, the evaporation is normally done
on the repulsive side at magnetic field strengths where the scattering length a is large
and positive. If one wants to create a mBEC, one chooses a magnetic field close to
the resonance where the Feshbach molecules are still stable (typically B ≈ 796 G). If
one is interested in a Fermi gas of atoms in |1〉 and |2〉, one evaporates further away
from the resonance (typically B ≈ 300 G) where the scattering length is negative
and thus no molecules are formed. Since at low temperatures collisions can only
occur between different spin states, a long rf-pulse (∼ 600 ms) is applied directly
before the evaporation to balance the atoms between state |1〉 and |2〉 and thus
enable efficient cooling.

Feshbach coils

To produce the homogeneous magnetic offset fields on the order of 1000 G required
to tune the scattering length a in the vicinity of the Feshbach resonance, we use two
coils in Helmholtz configuration which are mounted very close to the position of the
atoms (see Figure 3.3). Each coil has 30 windings and currents up to 200 A can flow
through them. Therefore they are glued onto water-cooled heat sinks.
The coils are mounted slightly farther apart than in the exact Helmholtz configura-

tion. Thereby one creates a magnetic field saddle which causes a weak anti-trapping
potential in vertical direction and a trapping potential in the horizontal plane for the
high-field seeking states |1〉, |2〉 and |3〉. This helps to strengthen the trapping along
the axis of the dipole beam which has the weakest optical confinement. Because the
current connectors introduce asymmetric distortions to the desired magnetic field,
we inserted small blocks of ferromagnetic steel on the Feshbach coils to counteract
these. By iteratively positioning these blocks on the coils, we could achieve that the
magnetic field saddle, onto which we align the ODT, is closer to the position of the
MOT, which increases the efficiency of the transfer.
To stabilize the magnetic offset field at the required value, we measure the current

through the coils using a Danfysik Ultrastab 866 current transducer and use a PID-
feedback loop to control the voltage of the Delta Electronika SM 30-200 power
supply. In the other experiment in our group the same setup is used and a magnetic
field stability of up to 5 mG is achieved [Zür12, Zür13]. In our experiment, the
achievable magnetic field stability should be slightly worse since we only use 5 V of





3. Experimental Setup

the available 10 V from the ADWIN analog control to regulate the power supply7.
Hence we could improve the dynamical range of our control using the whole 10 V
range by putting a voltage divider before the Delta Electronika power supply. At
worst, this should still give us a magnetic field stability better than 10 mG. In the
experimental results chapter, we can confirm that our magnetic field stability is on
the expected order, since we measure a drift smaller than 20 mG over the course of
a week using an rf-tomographic measurement.

3.2. The Pancake Trap Setup
As explained in chapter 1, we want to prepare a three-component Fermi gas in an
optical lattice. Since we want the gas to be quasi two-dimensional, we need a large
ratio between the horizontal and vertical trapping frequencies. Hence we need a
trap which tightly confines the atoms in the vertical axis.
We want to achieve this by loading the degenerate gas from the dipole trap into

a stack of pancake shaped potentials which are created by the interference pattern
of two vertically intersecting beams as explained in Section 2.5.1. To obtain a large
aspect ratio in the pancake trap and thus allow to confine a large number of atoms
in two dimensions, one needs a small vertical spacing between the pancakes which is
done by increasing the intersection angle. In the experiment, we are limited by the
viewports which allow for a crossing angle of ∼ 7 ◦ relative to the horizontal plane
which results in a pancake spacing of dPC ≈ 4µm. Since we want the confining
potential to be round in the horizontal plane, this requires the aspect ratio of the
focal beam waists to be 1:8 and we planned them to be ω0,vert = 75µm and ω0,hor =
600µm which would lead to a pancake diameter of about � = 1.2 mm. In total, this
should allow us to load ∼ 48, 000 atoms per spin state into the optical lattice while
still being quasi two-dimensional. This number is independent of the laser power
since it only depends only on the ratio of the trap frequencies. To achieve at least a
trap depth of V0 = 6.8µK, a power of 2 W is needed in each pancake beam. More
information on the design criteria of the pancake trap can also be found in [Boh12].
In order to conduct experiments in a 2D optical lattice, we have to be able to

reproducibly load the same pancake over long times. Therefore, the positional sta-
bility of the pancake traps has to be such that long time drifts are much smaller
than half the pancake spacing dPC and shot-to-shot fluctuations should be negligible.
Apart from the positional stability, we also need to achieve very low temperatures
to be able to observe interesting physics in the lattice. Therefore any strong heating
occurring in the lattice due to intensity fluctuations of the laser would be fatal.
Hence we need a low-noise laser source to produce the pancake and lattice beams.
To obtain a high passive stability of the interference fringes, we constructed a

compact aluminium casing in which all the required optical elements are mounted
and which can be itself fixed on the optical table (see Figure 3.6), thus dampening
mechanical oscillations. The design of the casing is as follows: the beam enters the
box under an angle of 45 ◦ and is split at a 50/50 non-polarizing beam splitter8. Each
7Its remote control input can only handle up to 5 V.
8The ratio between the two beams is not exactly 50:50 but 47:53.
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beam is then reflected by a mirror and leaves the box under the above mentioned 7 ◦
angle. This symmetric setup avoids any negative effects which could be produced
by shifts in the optical pathlengths due to a change in air pressure. The focusing
of the beam into the experiment is done by inserting a f = 900 mm lens before
the casing (see Figure 3.8). The stability has been tested with an external setup in

Figure 3.6.: Illustration of the compact pancake trap setup. The beam is split
by a 50/50 non-polarizing beam splitter and directed by two mirrors into
the experiment chamber. There the beams intersect to form the stack
of pancake shaped traps. In the upper beam path a λ/2-waveplate can
be inserted to rotate the polarization and turn off the interference. The
two cylindrical lenses in the beam paths are not included in the final
setup and are replaced by a single spherical lens in front of the casing.
The picture is taken from [Boh12].

a bachelor thesis [Sta12]. This was done by imaging the interference fringes onto
a CCD camera and measuring the phase drifts over several weeks. Over a period
of three weeks, the phase drifts were ∆φ ≤ 0.6 π, which indicates a good overall
stability. Shot-to-shot fluctuations were much smaller at around ∆φ ≤ π/30. Since
then, the box has been further improved by connecting the front and back panel of
the box better to the ground plate. This should further suppress oscillations and
hence improve the positional stability.

3.2.1. Optical Setup
As our laser source we use a 50 W NUFERN fiber amplifier operating at λ =
1064 nm. It amplifies the seed light coming from a low-noise continuous-wave single-
frequency 1064 nm solid-state laser (INNOLIGHT Mephisto-S 500 NE) with an out-
put power of 500 mW. The Mephisto has an active intensity noise reduction (noise-
eater) and a very narrow linewidth (≤ 1 kHz), thus we expect the NUFERN to have
low-noise characteristics as well. To confirm this, we measured the relative intensity
noise (RIN) of both lasers (see Section 3.2.2).
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Apart from providing the beams to create the pancake potentials, we will also use
the NUFERN laser for the beams which create the optical lattice. Therefore the
output beam has to be split into three paths. For this purpose a breadboard has
been set up above the NUFERN where the separation is done and the individual
beams are then coupled into high-power fibers (OZ Optics) going to the experiment.
Besides linking the breadboard to the experiment, putting the laser light through
a fiber also helps to have a well defined laser mode in the experiment. A sketch of
the setup is shown in Figure 3.7: the output beam has a slight angle coming out
of the fiber and hence the collimator (two f = 150 mm lenses → feff = 75 mm) is
mounted with an angle relative to the fiber. The collimation is chosen such that one
has a large beam diameter thereby reducing the effects of thermal lensing at high
powers. After collimation, the beam has a Gaussian diameter9 of about 4.4 mm and
passes a low-order λ/2-waveplate before going through an optical isolator (Thorlabs
IO-10-1064 VHP). The optical isolator prevents back reflections into the fiber and
the waveplate is used to minimize losses in the isolator. The transmission of the
isolator is ∼ 92 % and its clear aperture diameter is � = 9 mm, hence well above the
beam diameter. Since the polarization is rotated by 45 ◦ after the optical isolator,
an additional low-order λ/2-waveplate directly after it is used to make sure that the
polarization axis is aligned horizontally. Subsequently, the beam is split in three
parts by the combination of several low-order λ/2-waveplates and polarizing beam
splitters (PBS). In addition, power can be taken out of the paths and be dumped
with two additional λ/2-waveplate and PBS combinations before the splitting which
also leaves the option of implementing additional paths if ever needed.
In each arm, a telescope consisting of anti-reflection (AR) coated f = 300 mm and

f = −75 mm spherical lenses is set up to reduce the beam size by a factor of 4. This
is needed to match the beam size to the size of the AOM crystal and also to the
in- and outcoupler of the high-power fibers, which in our case result in a Gaussian
beam diameter of about 1.25 mm. This ensures a high coupling efficiency of about
80 % which is essential since we want to couple in up to 8 W of laser power into
these fibers. The f = 300 mm lens is mounted such that it can be tilted in both
axes to account for astigmatism which occurs at high beam powers due to thermal
lensing. Hence the whole setup was optimized at high powers as well. To regulate
the laser power in each beam path, the first diffraction order after going through an
acousto-optical modulator (AOM) is selected with an aperture10. By adjusting the
radio-frequency (rf) power which drives the AOM, the diffraction efficiency can be
controlled precisely and thus the power in each beam can be adjusted. The intensity
stabilization is done by collecting a small fraction of the light after the fiber on a
photodiode (see e.g. Figure 3.8 for the case of the pancake beam) and using a
PID-feedback loop which is done digitally with the ADwin experimental control to
regulate the rf-power of the AOM. The PID-feedback loop is done digitally with
the ADWIN experimental control. Apart from regulating the power in the beams,
the AOM’s can also be used to switch the beam on and off during an experiment
cycle by turning off the rf-power to the AOM’s and thus dumping the non-diffracted
beam.
9The Gaussian diameter is defined as the width where the intensity of the beam dropped to 1/e2.

10The aperture is inside a beam dump to cope with the high-powers.
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Figure 3.7.: Sketch of the NUFERN breadboard. The gray shaded polarizing
beam splitter and λ/2-waveplate can be rotated into the beam path in
order to dump power when aligning the setup at high powers.

Because the three beam paths are overlapped in the experimental chamber, one
wants to make sure that no frequency beating occurs in the critical range up to
100 kHz which could lead to heating of atoms and hence losses. Therefore the
frequency of each arm is shifted differently with the AOM’s. The pancake beam
beam is shifted by +100 MHz, the first lattice beam is shifted by +120 MHz and
the second lattice beam is shifted by −100 MHz. This ensures that the frequency
beating is always far off from the critical range. In addition, the lattice beams have
perpendicular polarizations relative to each other and thus there is no interference
between them.
To protect the high-power fibers from damage which would occur if too much

power is dumped in them, we set up an interlock system for each path to shut down
the beam if the coupling efficiency of the fiber drops below a critical threshold. The
interlock system measures the power before and after the fiber by collecting the
transmitted light after a mirror on a photodiode (see e.g. Figure 3.7 and 3.8 for the
pancake beam). Both signals are then processed by an ARDUINO micro-controller
board which calculates the coupling efficiency and shuts down the rf-power in the
AOM if the coupling efficiency drops below a certain threshold. The AOM then
does not diffract anymore and the beam is just dumped before the fiber.

Preparing and aligning the pancake beams

In Figure 3.8 a sketch of all the optics on the experiment table is shown and one
can see how we prepare the pancake beams. As mentioned earlier we need focal
beam waists of ω0,vert = 75µm and ω0,hor = 600µm to create our pancake shaped
potentials. Because the beam waist of a Gaussian beam transforms after a lens
as ω′0 ' λ·f

πω0
, this implies that we first have to expand the beam in the vertical

direction in order to achieve the desired aspect ratio. The ellipticity of the beam
is introduced using a cylindrical telescope consisting of a pair of f = −75 mm and
f = 500 mm cylindrical lenses which lead to an aspect ratio of about 1:7 in vertical
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direction which is slightly smaller than our initially planned aspect ratio of 1:8. To
further clean the polarization of the beam, a thin film Brewster polarizer (Altechna:
extinction ratio of ∼ 250 : 1) has been inserted into the telescope as well. To create
the two individual beams with our specially designed aluminium casing, we have
to enter it under an angle of 45 ◦ relative to the table. Therefore we project the
beam down from its initial height of about 10 cm to a height of about 2.5 cm using a
periscope. When setting the periscope up, we took great care to ensure that no tilt
of the beam is introduced, since this would distort our pancake potentials. The beam
is then directed into the casing using a combination of mirrors which are mounted
directly on the experiment table. The focusing of the beams is achieved by inserting
a f = 900 mm spherical lens directly after the telescope and thus before the beam
is split up. This should ensure that the focal point of both pancake beams is at the
same position inside the chamber. After passing through the chamber, both beams
are dumped behind a 2 ′′ dichroic11 mirror.
To align the pancake trap, we relied on different methods. First of all, since there

is an imaging along the pancake beam axis and a small part of the beams is reflected
at the 2 ′′ dichroic mirror, we can directly image the pancake beams onto the camera.
Thereby one can observe how the individual beams are moved with respect to each
other. This method can also be used to adjust the focus of the f = 900 mm spherical
lens to the position of the atoms. However, one has to keep in mind that the imaging
setup is optimized for λ = 671 nm and thus the infrared pancake beams are not in
focus on the camera.
After loading the pancake traps, one can overlap its position to that of the dipole

trap by inserting a λ/2-waveplate into one of the beam paths in the casing. This
leads to perpendicular polarizations in the beams which turns off the interference
fringes. The pancake traps then work simply as normal crossed beam dipole traps
and one can overlap the pancake trap center easier to the center of the dipole trap.
Thereby one ensures that one loads into the deepest fringes at the center when
turning on the interference again.

3.2.2. Noise Characterization
Technical noise on the laser leads to intensity fluctuations of the laser output. If
the frequency of these fluctuations coincides with the trap frequency, this can lead
to heating of the atoms in the trap and thus a loss of atoms. Thus to estimate the
effect of this noise induced heating, one has to characterize the noise spectrum of
the laser. In this Section, we first summarize the theory of noise induced heating
as derived in [Geh98]. Then our setup to measure the laser noise is described. At
last, the results are presented and the effect of noise induced heating in our setup is
estimated.

Noise induced heating

Technical noise leads to a fractional fluctuation ε (t) = I(t)−I0
I0

of the laser intensity
around a mean value I0. Since in a far-off resonant trap, the square of the trap
11Reflective for 671 nm and transmissive for 1064 nm wavelength.





3. Experimental Setup

Figure 3.8.: Sketch of the experiment chamber including all optical beam
paths. The MOT beams in horizontal direction go along the imaging
paths emerging from the MOT/Imaging outcouplers. The optics in both
lattice arms are identical and thus only the parts in lattice 1 are labeled.
The gray shaded parts in the dipole trap path can be rotated into the
beam path to dump power when aligning the beam. The posts are
set up to support an additional breadboard for the optics of our new
imaging objective [Ser11, Ber13] which will be inserted in the future.
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frequencies ω2
i is proportional to the laser power and thus the intensity, intensity

fluctuations lead to a fractional fluctuation of the spring constant of the harmonic
trap. Thus the Hamiltonian for a trapped atom of mass m e.g. in the z-axis can be
written as

H = p2

2m + 1
2mω

2
z [1 + ε (t)] z2, (3.4)

where ωz is the mean trapping frequency and the time-dependent perturbation is
given by

H ′ (t) = 1
2ε (t)mω2

zz
2. (3.5)

Since the fractional fluctuation of the laser intensity is small, one can use first-order
time-dependent perturbation theory to calculate the transition rate for an atom
initially in state |n〉 of the trap to a state |m 6= n〉 within a time interval T . Because
the perturbation is quadratic in its spatial coordinate, the perturbation does not
change the parity of the states and thus in a harmonic oscillator these transitions
can only occur in steps of ±2ωz. The transition rate Rn±2←n can then be calculated
as

Rn±2←n = πω2
z

16 Sk (2ωz) (n+ 1± 1) (n± 1) , (3.6)

where Sk is the one-sided power spectrum defined below. Since the overlap of adja-
cent states with the same parity increases for larger trap levels n, the transition rates
are not symmetric and the average energy increases over time. This also leads to
the fact that the heating depends on the temperature since with increasing temper-
ature, higher trap levels are occupied and hence the transition rates and therefore
the heating increases.
In equation (3.6), Sk (ω) is the one-sided power spectrum of the fractional intensity

fluctuation, defined for real-valued functions as

Sk(ω) ≡ 2
π

∫ ∞
0

dτ cos (ωτ) 〈ε (t) ε (t+ τ)〉, (3.7)

where
〈ε (t) ε (t+ τ)〉 ≡ 1

T

∫ T

0
dt ε (t)ε (t+ τ) (3.8)

is the correlation function of the fractional fluctuation12. The definition of the one-
sided power spectrum also fulfills∫ ∞

0
dω Sk(ω) =

〈
ε2 (t)

〉
≡ ε20, (3.9)

where ε0 is the root-mean-square fractional intensity fluctuation.
From the transition rates in equation (3.6) it is then easy to calculate the time

derivative 〈Ėz (t)〉 of the mean energy, assuming that initially the trapped atoms at

12In the derivation of the transition rates, it was assumed that the correlation time τ is much
smaller than the time interval T , which allows one to extend the bounds of the integral over
dτ to ±∞.
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time t occupy the states |n〉 with probability P (n, t)

〈Ėz (t)〉 =
∑
n

P (n, t) 2~ωz (Rn+2←n −Rn−2←n)

= π

2ω
2
zSk(2ω) 〈Ez(t)〉

= Γz〈Ez(t)〉, (3.10)

where the mean energy is defined as 〈Ez(t)〉 = ∑
n P (n, t) (n+ 1/2) ~ωz.

Thus the energy increases exponentially with an energy e-folding time13 of Te,z =
1/Γz.

Noise detection setup

To detect the one-sided power spectrum of the laser noise, we capture the laser light
on a fast photodiode with a bandwidth of ∼ 1 MHz. The light induces an electric
current ilaser which is proportional14 to the detected optical power if the photodiode
is operated in its linear regime. Therefore the fractional intensity fluctuation ε (t)
translates into e.g. the measured fractional voltage fluctuation on an oscilloscope.
In our setup, we use a HAMAMATSU InGaAs G8370-81 SPL15 photodiode with

an active area of 1 mm2. It has a linear response up to an incident power of ∼ 8 mW
and has a photo sensitivity of about 0.56 A/W at 1µm wavelength. The circuit of
the photodiode amplifier box is sketched in the Appendix B in Figure B.1. The
signal is then read out using a TiePie HS3 Handyscope with a sample rate of up to
50 MHz.
To obtain the one-sided power spectrum, we record the y-t signal in AC and DC

coupling with the maximal sample number of Ns = 131067 at a given sampling
frequency fs. By using AC coupling one increases the dynamic range to observe the
fluctuations. The AC coupled signal corresponds to I (t)−I0 whereas the mean of the
DC coupled signal corresponds to I0 and thus one obtains the fractional fluctuation
ε (t) = VAC/V̄DC from this measurement. Using the Wiener-Khinchin theorem [Wol]
and the fact that Sk(f) = 2πSk(ω), we can then calculate Sk(f) from equation (3.7)
using the Fourier transformation as

Sk(f) = 4
∫ ∞

0
dτ cos (2πfτ) 〈ε (t) ε (t+ τ)〉 = 2|F{ε (t)}|2, (3.11)

where F{ε(t)} =
∫∞
−∞ dt ε(t)e−i2πft is defined as the Fourier transform and we re-

placed the angular frequency ω = 2πf with the frequency f .
Because we deal with a finite sample length, one has to use a discrete Fourier

transformation (DFFT). The step size of the DFFT is ∆f = fs
Ns

and its unit is
[
V 2

∆f

]
.

To normalize it, one has to divide by the sample number N2
s . Thus to obtain the

correct power spectrum, one has to calculate

Sk(f) = DFFT (VAC) ·DFFT∗ (VAC)
Ns · fs · V̄ 2

DC
. (3.12)

13Defined as the time which is needed to increase the energy by a factor of e.
14Given by the quantum efficiency η (λ) of the photodiode.
15The cover glass is removed to avoid reflections.
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From the one-sided power spectrum one can also directly infer the so-called relative
intensity noise (RIN) of the laser which is simply given by

RINf = 10 · log10 Sk(f) , (3.13)

and is measured in units [dB/Hz]. The RIN is a widely used characterization of
the laser noise and thus often provided in data sheets. Therefore by measuring the
laser noise of the low-noise Mephisto seed laser and comparing our results to the
manufacturer’s data sheet, we could verify our detection method before measuring
the noise of the NUFERN laser.

Test of the detection setup

To get any meaningful results, one has to ensure that one is not limited by other noise
sources. Additional noise sources are dark currents in the photodiode box and the
inherent quantized nature of light. Dark currents are caused by thermal excitations
which lead to additional electron-hole pairs in the photodiode and thus add a dark
current ith. The photon flux varies with a poissonian distribution around a mean
value [Sal07] and thus the detected power also fluctuates which leads to so-called
shot-noise and limits the detectable RIN to [Dav97]

RINSNL = 10 · log10

(
2 · hν
ηP̄

)
. (3.14)

Thus in the measurement of the noise we make sure to have incident powers on
the order of 1 mW on the photodiode where the photodiode is still linear and the
output voltage on the oscilloscope is large without saturating it. This corresponds
to a shot-noise limit of about −152 dB/Hz and a photodiode background noise on
the same order which is sufficiently low to measure the expected laser noise. We
measured both the relative intensity noise of the Mephisto seed with the active noise
eater on and off, as well as the background noise of the photodiode when there was
no light present. In Figure 3.9 a), our results for these measurements are shown.
When comparing it to the specification of the manufacturer in b), one can see that
the characteristic profiles are in good agreement, including the position, width and
relative height of the relaxation peak when the noise eater is off and the crossing of
the noise levels with noise eater on/off above 1 MHz. Above 1 MHz one can also see
that we are limited in our detection by the background photodiode noise. However,
the trap frequencies in the experiment are on the order of at most 400 kHz and thus
this does not affect us since for the noise induced heating higher order excitations
|i〉 → |i+ 2n〉 with n > 1 are negligible due to the small overlap of the respective
wave functions.
When comparing the absolute RIN of both measurements, one sees that our mea-

sured curves have an constant offset of ∼ 10 dB/Hz compared to the specified curves.
Thus either the performance of the laser is worse due to different conditions or pa-
rameters or there is a systematic difference in our definition of the noise or detection
method. In the worst case, we overestimate the noise level and therefore we can take
all results we obtain with these noise measurements as a lower bound of our laser
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Figure 3.9.: RIN measurement of the Mephisto noise. a) Experimental data
from our setup with the noise eater ON (blue) and OFF (red). The
sampling frequency was fs = 3.125 MHz and a moving average was taken
over a span of 500 Hz to smooth the curves. The green-dotted line shows
the shot-noise limited RIN and the black data is the background noise
from the photodiode. b) Specifications from the Mephisto datasheet
[Mep].

performance. In addition, conclusions about relative noise levels are still valid since
the relative difference in our measurement agrees with the one of the data sheet.
With the active noise eater on, the Mephisto has an almost constant RIN of
∼ −135 dB/Hz for frequencies up to several hundred kHz. In the vertical axis of the
pancake traps we will have typical trap frequencies of about 10 kHz and in the 2D
lattice we will have trap frequencies on the order of 300 kHz. Putting these numbers
into the energy e-folding time Te

Te = 1
π2f 2Sk(2f) (3.15)

derived from equation (3.10) results in times of Te,pancake ≈ 32000 s and Te,lattice ≈
36 s respectively. Thus the laser noise of the Mephisto seed will not limit us when
conducting experiments in the optical lattices which will be on the timescale of a
few seconds.

Measurement of the NUFERN noise

To characterize the noise which the NUFERN amplifier creates additionally to the
Mephisto operating with active noise eater on, we measured the laser noise of the
amplified beam both on the breadboard side before the high-power fiber and on
the experiment side (see Appendix B, Figure B.2). The first thing we looked at is
how much noise the NUFERN adds in dependence of the pump current. In Figure
3.10 the measurement of the noise on the breadboard side is shown for two different
pump currents Ip = 0 A, the lowest possible pump current16 corresponding to a laser
16Note that this is just the set value of the NUFERN control but there is already pumping present.
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Figure 3.10.: RIN measurement of the NUFERN noise at low and high
pump power. The sampling frequency was fs = 3.125 MHz and a
moving average was taken over a span of 500 Hz to smooth the curves.
The NUFERN was free running at powers of P = 1 W (red) and P =
25 W (blue). The noise is increased by approximately 10 dB/Hz for
low laser powers and by up to 25 dB/Hz for high laser powers. At high
laser powers, the noise converges towards the Mephisto noise floor at
frequencies above 200 kHz.

output of ≈ 1 W and Ip = 30 A, a pump current corresponding to a laser output of
≈ 25 W. Already at the lowest pump current, the noise is increased by ∼ 10 dB/Hz
throughout the spectrum. For larger pump currents, the noise in the region below
200 kHz is increased further by up to 25 dB/Hz compared to the Mephisto noise floor,
whereas for higher frequencies the NUFERN noise converges towards the Mephisto
noise floor.
The next thing we checked is if the coupling through the high-power fiber changes

the noise characteristics. Therefore we measured the noise at high laser power of
P = 25 W on both sides of the fiber. As one can see in Appendix B Figure B.3,
the noise spectrum is not altered by the fiber, except for larger spikes emerging at
frequencies above 200 kHz with a width on the order of 1 kHz. We confirmed that
these spikes are due to the photodiode background noise and stem from a ground
loop between the photodiode box - grounded on the optical table - and the TiePie
which is grounded via the power supply of the laptop (see Appendix B Figure B.4).
Thus to get rid of these in future measurements, one should not ground the TiePie
Handyscope.
In the experiment, we stabilize the power in the pancake beam using a digital PID-

feedback control implemented in the ADwin experiment control. It has a sampling
rate of 100 kHz and the power is controlled via the intensity of the diffracted light
of an AOM. Therefore we measured the noise of the NUFERN running at high
power on the experiment side both with the power stabilization turned on and
off (free running). The results can be seen in Figure 3.11. The most prominent
feature is the emergence of the so-called servo bump [Wei11] at about 40 kHz. There
the feedback loop has a negative feedback which leads to an increased sensitivity,
effectively increasing the noise around these frequencies. The hight of the servo
bump depends on the settings of the PID parameters and thus also depends on
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the incoming power. Above 100 kHz, additional peaks appear albeit at a lower noise
level (see panel b)). Because the servo bump appears at frequencies close to the trap
frequencies which we expect for the vertical direction of the pancakes, one can think
about implementing a faster PID control in the future with a larger bandwidth, thus
shifting the servo bump to higher frequencies. Ultimately, the limit for such PID
control is given by the bandwidth of the AOM. With a beam diameter of d = 1 mm
and the sound velocity of v = 4.2 mm/µm in the crystal, the response time of the
AOM is tr = d/v = 250 ns. This limits the bandwidth to about 1 MHz. Therefore
the servo bump would be closer to the lattice trap frequencies at about 300 kHz
which could impose problems since the e-folding time Te scales as 1/f 2

trap and thus
the noise becomes more important. Hence we decided to keep the current setup.
In graph a) one can see that at frequencies below 20 kHz the power stabilization
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Figure 3.11.: RIN measurement of the NUFERN noise with power stabi-
lization turned on/off. a) Sampling frequency fs = 196.315 kHz
and moving average over a span of 31 Hz. b) Sampling frequency
fs = 3.125 MHz and moving average over a span of 500 Hz. The red
data points correspond to the free running case and the blue data
points to the case when the power was stabilized using the digital
PID-feedback. The NUFERN was running at P = 25 W.

suppresses the noise by up to ∼ 18 dB/Hz and hence in this regime the power
stabilized laser outperforms the free running laser. The calculation of the e-folding
time Te at a given trap frequency ftrap (see equation (3.15)) depends however on the
one-sided power spectrum Sk (2ftrap) and thus the e-folding time Te of the power
stabilized laser is only improved up to ∼ 10 kHz. In Figure 3.12 the derived e-folding
times from the noise measurement are shown. At small frequencies on the order of a
few kHz, Te is larger than 100 s and thus noise induced heating is not a problem on
the timescales of our experiments which last usually not more than 10 s. Te has its
minimum of about 10 s at trapping frequencies of about 20 kHz. Above this critical
range, Te improves again due to the decreasing laser noise although Te scales with
the trapping frequency ftrap as 1/f 2

trap. Therefore the most critical range for noise
induced heating in the trap is in this regime below 20 kHz. Since we also expect
the trap frequency of the vertical axis in the pancake trap to be on the order of
10 kHz, the increased noise in this regime could limit the lifetime of the atoms in
the pancakes. To estimate the effect of this exponential noise induced heating, one
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has to compare it with the linear heating due to the photon scattering, as described
by equation (2.52). The time ∆t at which the noise induced heating dominates the
photon scattering induced heating ∆Tsc can be calculated as ∆Tsc = T0

(
e∆t/Te − 1

)
.

Assuming an initial temperature of T0 = 300 nK in the pancake trap and a total
beam power of 4 W, we expect trap frequencies of about 10 kHz in vertical direction
in the pancake trap. A lower bound for the e-folding time at these frequencies is
about Te,min = 30 s. Putting these parameters into the equation results in a time
∆t ≈ 23 s. Therefore on the timescales of our experiments noise induced heating
should be negligible if the temperature of the atoms in the crossed beam dipole trap
is on the order or below 300 nK before the transfer into the pancake trap. Thus we
expect not to be limited by laser noise in the experiment.
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Figure 3.12.: Energy e-folding time constant for the NUFERN. a) Sampling
frequency fs = 196.315 kHz and moving average over a span of 31 Hz.
b) Sampling frequency fs = 3.125 MHz and moving average over a span
of 500 Hz. The red data points correspond to the free running case and
the blue data points to the case when the power was stabilized using
the digital PID-feedback. The NUFERN was running at P = 25 W.
The spikes in panel b) are due to background noise in the photodiode
and thus do not contribute to the heating rate.

3.3. Radio-Frequency Setup
The starting point for our experiments is always a spin mixture of 6Li atoms in the
hyperfine states |1〉 and |2〉 in the dipole trap. Therefore to perform experiments with
a three-component mixture, we need to transfer atoms into the initially unoccupied
hyperfine state |3〉. This can be done by applying a radio-frequency (rf) pulse at the
right transition frequency and pulse length which is described in detail in Section
4.5.1.
To create the rf-pulses, an rf-antenna has been installed directly into the vacuum

chamber such that it is positioned close to the atoms. Thereby one obtains large
Rabi-frequencies which allows us to do these transfers very fast. To prevent the coil
from overheating in the vacuum chamber, an interlock system has been inserted.
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More details on the optimization of the rf-antenna can be found in a recent Bachelor
thesis [Heu11] and its application in the experiment can be found in [Boh12].

3.4. Imaging
To examine the atoms in our traps, we perform both absorption or fluorescence
imaging along different axes. Fluorescence imaging is done by capturing the re-
emitted photons from the MOT on a CCD camera with an appropriate optical
imaging system. From the captured solid angle, the photon scattering rate and the
camera properties one can then infer e.g. the atom number in the MOT.
To image the atoms inside optical traps, one relies on absorption imaging (see

Figure 3.13) since the atoms do not scatter the far off-resonant trapping light17.
The idea of absorption imaging is to apply a short pulse of resonant light to the
atoms and capture the transmitted light on a camera. Since the atoms scatter the
light, there will be a dark spot (shadow) on the CCD cameras at the location of
the atoms. By taking a second picture without any atoms and taking the ratio of
the intensities on the two images, one can infer the column density n2D along the
line of imaging. Because the ratio of two pictures is used, only static fringes on the
imaging light do not have any effect on the SNR. To avoid that any vibrations add
non-static fringes, we switch off our magnetic Feshbach coils only after the second
picture has been taken. Since each scattering event gives a recoil to the atom, the
applied pulse has to be short to not wash out any structure information. This is
especially true for 6Li, since it has a small mass and therefore a high recoil velocity.
Hence we limit the duration of our imaging pulses to 10µs or less.
More information on imaging techniques in ultracold gases can be found in [Ket99]

or in [Lom08] for the special case of 6Li.

~30 images
averaged

Top-Down
vertical

Pancake beam axis
horizontal

MOT axis
horizontal

Figure 3.13.: Absorption images of the dipole trap from all installed cam-
eras. The images represent averages over ∼ 30 individual absorption
images.

17In principle it is possible to flash the atoms with a short resonant light pulse and capture the
scattered photons, however the signal-to-noise (SNR) ratio for dense clouds is worse than in
absorption imaging.
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Top-Down axis
To observe the atomic profile in the horizontal plane, we use an imaging axis setup
parallel to the vertical MOT beam. The outcoupler for the imaging beam is mounted
on top of the octagonal experiment chamber (see Figure 3.8) and uses the design as
explained in Figure 3.5 to overlap the imaging beam with the MOT beam. After
the beams pass the experiment chamber they are separated using a combination of
a λ/4-waveplate and a MOXTEK reflective polarizer. The imaging light is then di-
rected onto an AVT Stingray F-125B camera with a 2 ” mirror below the experiment
chamber. The camera has a pixel size of 3.75µm× 3.75µm and the imaging system
consists of two f = 80 mm achromatic lenses resulting in a magnification of M ≈ 1
with an uncertainty on the order of a few %. The lens has a numerical aperture
NA ≈ 0.14 limiting the maximal achievable resolution to dmin = 2.9µm.
In the near future, we will change this imaging to implement a new objective with

a high numerical aperture (NA ≈ 0.6). A copy of this objective is has been installed
and is currently tested in the other experiment in our group [Ber13]. The achievable
resolution for this new objective at a wavelength of λ = 671 nm has been measured
to be at least better than dexpmin ≤ 1.01µm in comparison to the planned resolution
of dtheomin = 682 nm. However the estimate of the resolution was done measuring the
point-spread function of a pinhole with a diameter of 650 nm and thus the achievable
resolution is probably even smaller. This improved resolution will be an important
factor when investigating the 2D optical lattice.

Pancake beam axis horizontal
To image the atoms along the long axis of the optical dipole trap, we inserted an
imaging axis parallel to the pancake beams. The outcoupler is mounted vertically
on the outer wall of the aluminium casing for the pancake trap. A mirror which is
mounted on the casing as well then directs the imaging beam into the experiment
chamber. To obtain a high numerical aperture, the objective (f = 120 mm) is
directly mounted on the viewport (see Figure 3.8). Because the dipole trap beams
pass through this viewport as well, we cut two elliptical holes into the lens to let
them pass unaffected. In vertical direction, the objective has a numerical aperture of
Nvert ≈ 0.15 and hence a theoretical maximal achievable resolution of dvertmin = 2.8µm.
The achievable resolution in horizontal direction is slightly lower since the holes in
the lens introduce perturbations and thus limit the usable lens size. We tested the
objective in an external test setup and confirmed a resolution of at least dvert,expmin =
3.5µm by using both a 1951 USAF test target and a pinhole. In theory this should
barely enable us to directly resolve the individual pancakes, since they have a spacing
of about 4µm. But this is only true for very low atom numbers because the depth
of focus puts a serious limitation on the resolution. When comparing the depth of
focus of about zDOF = 4λ

NA2 ≈ 93µm to the size of the atom cloud in the pancakes
of about 300µm, one can see that blurring will decrease the achievable resolution.
Thus this limitation can only be overcome for very low atom numbers where the
cloud size becomes smaller than zDOF. But for such low number of atoms the signal-
to-noise ratio (SNR) is very bad and therefore we have not been able to directly
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resolve the pancakes.
After passing through the experiment chamber, the beam is reflected by a 2 ”

dichroic mirror and focused onto the camera with a f = 400 mm, 2 ” lens. The
dichroic mirror is used to suppress any reflections from the IR pancake beams. Since
there is quite a lot power to begin with in these beams, an additional IR filter is also
placed directly in front of the camera. The camera itself is a AVT Guppy Pro F-125B
with a pixel size of 3.75µm × 3.75µm and the imaging system has a magnification
of M ≈ 3.3. Since the objective for this setup is directly mounted on the viewport
of the experimental chamber and its relative distance to the atoms cannot be tuned
easily, we estimate an error on the order of 10 % for the magnification.

MOT axis horizontal
When looking along the dipole trap axis, one is not able to observe how well the
incoming and reflected dipole trap beam are overlapped in vertical direction. There-
fore, we set up another imaging along one of the MOT axis (see Figure 3.8). The
splitting of the MOT and imaging beam is done as described in Figure 3.5. The
imaging system uses two f = 200 mm lenses resulting in a magnification of M ≈ 2
with an uncertainty on the order of a few %. The camera is an AVT Stingray F-145B
with a pixel size of of 6.45µm× 6.45µm. So far we implemented this imaging only
in one of the MOT arms, but we are planning to implement one in the other MOT
axis soon as well.





4. Characterization of the Pancake
Trap

In this chapter the different measurements we performed to characterize the pancake
trap are described in detail. Some of these measurements were done before and
some after we moved the experiment from the MPIK to the PI in December of 2012.
Because we had to realign the trap again after the move, some properties of the
pancake trap may have changed slightly.
First in Section 4.1 we describe the transfer of the atoms into the pancake trap

after evaporatively cooling them in the dipole trap. Then in Section 4.2 the mea-
surement of the pancake trap frequencies which characterize the strength of the
confinement in the different axes is described. Subsequently in Section 4.3 the mea-
surement of the lifetime of the atoms in the pancake trap is shown. Atom losses
lead to so-called hole heating and hence a long lifetime is crucial for the experiments
we want to perform. These measurements were all performed after we moved the
experiment to our new labs.
Already before the move, we investigated the diffraction of a molecular BEC on

the pulsed pancake trap to get an estimate of the pancake depth. Therefore in
Section 4.4, we first describe the basics of this so-called Kapitza-Dirac diffraction
before explaining the experimental sequence and showing our results. To investigate
the atom population in each pancake and obtain a method to count how many of
the pancakes we load, we used a radio-frequency (rf) tomographic measurement. In
Section 4.5 we first give a short summary on the basics of rf-transitions and the
calibration of our rf-system. Then the measurement is explained and the results are
presented in detail. From this measurement also the short and long term positional
stability of the pancake trap is estimated. Finally in Section 4.6 our so far achieved
progress towards loading a single pancake is summarized shortly.

4.1. Transfer into the Pancake Trap
To transfer the atoms into the stack of pancake traps, one slowly ramps down the
power in the dipole trap while simultaneously ramping up the power in the pancake
trap to the desired trap depth. Depending on the initial vertical extension of the
cloud in the dipole trap, the atoms are then transferred into several layers of the
pancake trap. Since the separation between these layers is on the order of 4µm,
the atoms do not tunnel between these layers at normal trap depths. In Figure
4.1 such a transfer is shown for a mBEC at a magnetic field of B = 795 G. One
can clearly see the difference between the surfboard shaped potential of the dipole
trap and the pancake shaped potential of the pancake trap. From the size of the
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cloud in vertical direction we can see that we do not load the atoms into a single
pancake but into several. However this cannot be directly resolved by our absorption
imaging and thus we do not see this structure in the absorption image of the cloud.
Therefore we used other techniques to make the distribution of the atoms in the
individuals layers visible (see Section 4.5). In the top-down imaging one can see

Top-Down5vertical Pancake5beam5axis5horizontal

pancake5trap

dipole5trap

~400μm

~80μm

~265μm

~320μm

~120μm

~40μm

~380μm

~32μm

y

x

z

x

Figure 4.1.: Transfer from the dipole trap into a stack of pancakes. The
images represent averages over ∼ 30 individual absorption images. The
widths d are estimated from Gaussian fits as d = 4σ. In the upper
row one can see nicely the characteristic surfboard shape of the crossed
beam trap due to the elliptical beam. In the lower row the pancake trap
is shown and one can see from the top-down imaging that the trap is
almost round with an aspect ratio of 1:1.2. The aspect ratio from the
front cannot be that easily estimated since the vertical size of the cloud
is much larger than a single pancake. The different widths in the x-axis
between the two cameras stem from uncertainties in the magnification
calibration and imaging angles.

that our pancakes are not perfectly round but are slightly elliptical with an aspect
ratio of about 1:1.2 which should manifest itself in the trap frequencies as well. The
size of the cloud differs for the two cameras, which is due to uncertainties in the
magnification calibration of the imaging systems and also because of imaging angles.

4.2. Trap Frequencies in the Pancake Trap
Optical traps can be described in a good approximation by a harmonic potential
in three dimensions with distinctive trap frequencies ωi = 2πfi which scale with
the square-root of the beam power (see equation (2.42)). To measure these trap
frequencies, one can do the following: after the transfer of a two-component mixture
of atoms into the pancakes, the pancake potential is suddenly ramped up to twice
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its value1. This excites a breathing mode - a collective motion of the atoms inside
the trap - where the width of the cloud oscillates at twice the trap frequency. Thus
by imaging the cloud after different hold times, one can make these oscillations
visible and obtain the trap frequencies by looking at the width of the cloud from
different axes. Since interaction effects would lead to a damping of the oscillation,
the magnetic field is ramped close to the zero-crossing of the scattering length at
B ≈ 527 G immediately before the potential jump. However a damping of the
oscillations can still be observed since inhomogeneous magnetic field gradients and
curvatures lead to a dephasing of the atoms.
In Figure 4.2 such a measurement is shown for each of the pancake trap axes at a

pancake trap depth of 3.5 Vcontr which corresponds to a total beam power of 2.35 W.
In the horizontal plane, the x-axis is defined along the Zeeman slower whereas the
y-axis is defined along the pancake beams. One can see that the horizontal trap
frequencies are almost identical and much smaller than the vertical trap frequency,
hence the trap has a large aspect ratio as planned. Since the confinement in the
vertical axis is much stronger, the images for the evolution of the cloud in the z-
axis were taken after a short time-of-flight, to make the fitting easier. We did this
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Figure 4.2.: Measurement of the trap frequencies for a given trap depth.
The Gaussian width σ is plotted versus the time the atoms oscillated in
the trap. a) Horizontal trap frequency along the Zeeman slower axis. b)
Horizontal trap frequency along the pancake beam axis. c) Vertical trap
frequency. The fits are damped sine functions and the trap frequencies
correspond to half the oscillation frequencies. The trap depth was set
to 3.5 Vcontr, corresponding to a total beam power of 2.35 W.

measurement at different trap depths and thus we can plot the evolution of the trap
frequencies as a function of the trap depth (see Figure 4.3). The fits are square-root
laws of the form ftrap =

√
const2P 2 ± f 2

mag(B), where the additional term describes
the confinement due to the magnetic field saddle produced by the Feshbach coils.
The magnetic field saddle leads to a weak magnetic confinement in the horizontal
plane and a weak anti-confinement in the vertical axis on the order of a few Hz. Since
the vertical optical confinement is much stronger, the anti-confinement in the vertical
direction can be neglected. At a field of B = 527 G, the magnetic confinement in
the horizontal plane has a trap frequency of about fmag = 4 Hz.
1When the potential jump is too large, the atoms probe the potential further from the center
where the harmonic approximation is not good anymore.





4. Characterization of the Pancake Trap

From these measurements one can also calculate the aspect ratio of our trap. In
the horizontal plane we have an aspect ratio fx/fy ≈ 1.2 and thus the pancakes
are almost round as planned. Overall the measured aspect ratio is ωx : ωy : ωz ≈
1.2 : 1 : 357. The pancake traps have a planned vertical waist on the order of 2µm
and a horizontal waist of 600µm. Since the trap frequencies ωi scale inversely to
the beam waists wi (see equation (2.42)), this results in a planned aspect ratio of
ωy : ωx : ωz ≈ 1 : 1 : 300 which is in good agreement to our measurement. Although
the aspect ratio is as expected, our measured trap frequencies are systematically a
factor 1.8 smaller than we would expect from a calculation, which indicates that the
trap depth is not as deep as planned. It has not been thoroughly investigated so far
if this deviation stems from an error in the calculation or some variation from the
planned beam geometries, however the achievable trap depths should be sufficient
to reach the regimes we planned for.
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Figure 4.3.: Pancake trap frequencies in dependence of the trap depth.
The trap frequencies are plotted versus the trap depth. a) Horizon-
tal trap frequencies. The inlay shows the aspect ratio fx/fy. b)
Vertical trap frequency. The fits in a) are given by square-root laws
ftrap =

√
const2P 2 + f 2

mag(B = 527 G) whereas in b) the magnetic anti-
confinement is neglected and the fit is simply ftrap =

√
const2P 2.

4.3. Lifetime in the Pancake Trap
To measure the lifetime of the atoms in the pancake trap, we did a low-field evapora-
tion in the dipole trap to produce a degenerate Fermi gas with about 100, 000 atoms
in each spin state at a temperature of T ≈ 240 nK, corresponding to T/TF ≈ 0.44.
As explained in Section 3.2.2, we expect the lifetime not to be limited by noise
induced heating in the trap at these low temperatures.
Before transferring the atoms into the pancakes, we switched off the interaction

between the spin states by ramping to a magnetic field B ≈ 527 G where the scat-
tering length has its zero-crossing. Therefore one has a non-interacting Fermi gas
and no further evaporation or thermalization should affect the lifetime measurement.
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After the transfer, we held the atoms inside the pancake traps for varying hold times
between 0.1 s and 20.1 s and measured the atom number in one spin state using ab-
sorption imaging. To check the influence of the pancake depth onto the lifetime, we
did this measurement for varying trap depths between 1.5 Vcontr and 5.5 Vcontr. As
one can see in Figure 4.4 a), the decay can be fitted well using an exponential decay
N (t) = N0 · e−

t
τ where τ is the lifetime and N0 is the initial number of atoms and

thus the decay is dominated by one-body loss processes. These are either scattering
of the atoms with the background gas or with the photons from the far off-resonant
optical trap. In Figure 4.4 b) the lifetime is plotted versus the trap depth which is
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Figure 4.4.: Lifetime measurement for the pancake trap. a) Atom number
versus hold time for varying trap depths. The lines are exponential
decays fitted to the data. b) Lifetime τ in dependence of the trap depth
which is proportional to the laser power. The lifetime is ∼ 50 s and there
seems to be no strong dependence of the lifetime on the trap depth.

proportional to the laser power. The lifetime seems to have no strong dependence on
the laser power and thus already at small trap depths of V0 = 1.5 Vcontr correspond-
ing to a total pancake beam power of 1 W, the lifetime is τ ≈ 47 s and hence much
larger than the time scale of our experiments (∼ 1 s). The lifetime then reaches its
maximum of τ ≈ 54 s at a trap depth of V0 ≈ 3.5 Vcontr before slightly decreasing
again. However the deviations in lifetime are small and are within the error of the
fit.
For a degenerate Fermi gas with T/TF < 1, one also has to consider the effect

of hole heating. Each loss process kicks out an atom and thus leaves a hole in
the Fermi distribution. In subsequent collisions, a fermion can then relax into this
unoccupied state which leads to an excitation of another fermion into a higher trap
level and thus increases the temperature. This is a severe problem since the only
cooling mechanism, evaporative cooling, is highly suppressed at these temperatures
due to Pauli blocking [Hol00, DeM01]. The effect of hole heating in a homogeneous
Fermi mixture was calculated by E. Timmermans [Tim01] to be

T

TF
=
(
T0

TF,0

)(
N

N0

)−1/3
×

√√√√1 + 12
5π2

[
TF,0
T0

]2 [
1−

(
N

N0

)2/3]
, (4.1)
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where T0/TF,0 is the initial temperature in units of the Fermi temperature and the
fraction of remaining particles N/N0 can be substituted by exp (−t/τ) if the loss is
predominantly caused by background and photon scattering. For short time scales
equation (4.1) can be approximated by

T

TF
= T0

TF,0

√
1 + 3t

τ2
with τ2 =

(
15π2

8

)[
T0

TF,0

]2

τ (4.2)

being the temperature doubling time which gives the time scale after which the
initial temperature in the trap has doubled. Thus hole heating gets more severe
with decreasing temperature but can be suppressed by having long lifetimes τ in
the trap.
Therefore, even if one would be able to load a Fermi gas with T/TF � 1 into

the lattice, in our setup with an average lifetime τ ≈ 50 s the temperature would
already reach 0.1TF after a time scale ∆t ∼ 0.07τ ≈ 3 s and 0.2TF after a time scale
∆t ∼ 0.2τ ≈ 10 s respectively.
In the Fermi-Hubbard model for an optical lattice, the timescales are given by

the tunneling strength J between adjacent lattice sites and the on-site interaction
energy U . For our planned values these timescales are well above 100 Hz and thus
we should be able to investigate the physics in the lattice before the heating becomes
too severe.
However, cooling atomic clouds down to initial temperatures below even 0.05TF is

very challenging and thus these time scales represent only upper bounds. Further-
more, ramping the lattice up is not a perfectly adiabatic process which can lead to
further heating. Thus one has to find a trade-off between a lattice ramp time which
is slow enough to not introduce too much heating but fast enough in order not to
be limited by hole heating.
This makes it experimentally very challenging to observe effects which only form

below a certain temperature threshold like e.g. the emergence of an antiferromag-
netic (AFM) ground state or the formation of superfluid Cooper pairs. To realize
e.g the AFM phase in an optical lattice experiment, one expects that the required
temperatures are below T/TF < 0.04 [McK11], which is a reason it has not been
observed so far experimentally.

4.4. Making the Pancakes visible: Kapitza-Dirac
Diffraction

Imaging the individual pancakes from the side is made difficult due to their high
anisotropy. Resolving individual pancakes requires a resolution which is much better
than the pancake spacing dPC ≈ 4µm, however an imaging system satisfying this
condition would have a depth of focus on the order of 90µm which is with feasible
atom numbers much smaller than the horizontal extension of the atoms in the pan-
cake potentials of about 300µm. Hence blurring would occur which would smear
out the structure. Thus only at very low atom numbers when the atoms are confined
close to the pancake center, a direct observation of the pancake structure would be
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possible. But at these low atom numbers the signal-to-noise ratio (SNR) is quite
bad and thus a direct detection of the pancake structure is challenging. In our setup
we are also limited in the achievable vertical resolution by the side window and thus
our resolution is just barely below the pancake spacing, increasing the difficulty of
a direct observation even more.
To still be able to monitor and evaluate the pancake trap we had to find another

way to make the pancake potentials visible. An established method for this is to
switch on the periodic potential for a short time, thus diffracting the atomic cloud
on this standing wave. This leads to a discrete momentum transfer on the cloud
which is made visible in time-of-flight (TOF) imaging by several separated clouds.
From the relative atom numbers of these separated clouds and the distance between
them, one can then infer the lattice spacing dl and the trap depth V0.
In the following, the theory of diffraction on a pulsed potential is summarized

and subsequently our application of this method to characterize our pancake traps
is presented.

4.4.1. Basics of Kapitza-Dirac Diffraction
The diffraction of matter on a pulsed standing light wave can be seen as an analogon
to the classical case of light diffraction on a grating but with reversed roles. The idea
was originally proposed in 1933 by P. Kapitza and P. Dirac [Kap33], who suggested
that one can diffract electrons on a standing light wave. However, since the interac-
tion between the electrons and the light-wave is very weak, it required the availability
of high-power lasers to verify the effect experimentally in 2001 [Fre01, Fre02]. The
generalization of Kapitza-Dirac diffraction to neutral atoms was proposed in 1966
[Alt66] and verified experimentally in 1986 [Gou86].
Kapitza-Dirac diffraction relies on a stimulated scattering process between the

lattice photons and the atoms. In a simplified picture, this can be seen as a two-
step process: The atom first ’absorbs’ one photon from one of the lattice beams
and then undergoes a stimulated ’emission’ into the mode of the other lattice beam.
Thus in total, although no energy is transferred, the atom experiences a net recoil
of prec = 2 · ~ · kl, where kl = 2π/λl is the lattice vector of the standing wave.
Depending on the interaction time with the light field, also higher order processes
can occur and multiples of prec can be transferred.
Theoretically, the effect can be described as follows [Gad09, Fre02]: the standing

wave changes the Hamiltonian Ĥ which governs the evolution of the atomic wave
function ψ to

Ĥ = − (~/2m) ∂2
z + V0 cos2 (klz) , (4.3)

where m is the atomic mass. Expanding the corresponding atomic wave function
ψ in a basis consisting of plane waves populating the diffraction orders and taking
into account that at t = 0 all atoms are in the zeroth diffraction order, one obtains

ψ (t) =
∑
n

cn (t) ei2nklz, (4.4)

where n = 0,±1,±2, ... and cn(t = 0) = δn,0. The probability that a certain
diffraction order is populated after applying a pulse of length τ is then given by
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Pn = |cn (τ)|2.
To obtain the coefficients cn(t) one has to solve the time-dependent Schrödinger

equation for the Hamiltonian (4.3) which leads to a set of coupled differential equa-
tions

i
dcn
dt = αn2

τ
cn + β

4τ (cn−1 + 2cn + cn+1) . (4.5)

Here the dimensionless parameter α = τ/τ (2) describes the pulse duration in terms
of the 2-photon recoil time τ (2) = ~/E(2)

rec where E(n)
rec = (n~k)2/2m is the n-photon

recoil energy and E(1)
rec ≡ Erec. The dimensionless parameter β = (V0/~) τ describes

the area of the pulse, namely the product of the lattice depth V0 and the pulse
duration τ . Due to the symmetry of the diffraction, one has to solve in general
N + 1 coupled differential equations if there are N diffraction orders present. The
highest transferable momentum is given by

n̄ =
√
β/α, (4.6)

and refers to the case when the potential energy V0 is completely transfered into
kinetic energy Ekin = (2n̄~k)2/2m.
The evolution of the population probabilities can be understood when one com-

pares the pulse length τ with the oscillation period tho = 1/ωho = ~/
√

2V0Erec in
the approximated harmonic potential of each lattice site.

• For τ � tho, the Raman-Nath approximation is used which neglects the
kinetic-energy term in the single-particle Hamiltonian (4.3) during the pulse
application. This is justified because the atom’s displacement due to the pulse
is small compared to the lattice spacing dl and thus the pulsed lattice can be
interpreted as a thin phase grating, modifying the atomic wave function by a
phase Φ = V0 cos2 (klz) τ/~ [Ovc99] without affecting its spatial distribution.
This leads to population probabilities

Pn = J2
n

(
V0τ

2~

)
, (4.7)

where Jn are Bessel functions of the first kind. Thus the pulse length can be
seen as playing the role of the thickness in normal Bragg diffraction.

• For τ & tho the atoms oscillate in the harmonic potential of the lattice sites.
This leads to a periodically focusing and defocusing of the diffraction orders.
Therefore the thin phase grating approximation is not valid anymore and the
kinetic energy has to be considered. To obtain the populations in the different
orders, one now has to solve the coupled differential equations (4.5) numerically
[Gad09, Huc09, Ovc99].

In our measurements, we operated in the regime 0.16 ≤ τ/tho ≤ 1.5 corresponding
to a maximal transferred momentum of n̄ = 4. Thus to account for the relative
population probabilities correctly, one would have to solve the coupled differential
equations numerically. However for the sake of simplicity, we use the much simpler
Raman-Nath approximation (4.7) to fit our data. Thus the absolute value of our
determined lattice depth is not very precise but has a large error.
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This approximation is nevertheless useful for us since we used it as an alignment
tool to check how the lattice depth V0 improved in each iteration of our alignment
procedure. Apart from that, we could also infer the spacing between pancakes from
this measurement, since the transferred momentum and thus the position of the
peaks is independent of the approximation.

4.4.2. Experimental Results
We use this rough estimate of the pancake depth V0 to improve the alignment of the
trap by comparing the result to a projected value using a Mathematica calculation.
In our first iteration our measured value for the trap depth V exp

0 was about a factor
of ten smaller than the projected value V calc

0 , indicating that we had aligned the
outer pancakes of the intersection which are not as deep as the center ones, with the
center of the dipole trap. Readjusting for that, we improved the deviation to a factor
of three and by fine-tuning the overlap of the two traps our last iteration yielded
V calc

0 ≈ 2V exp
0 . In the following we present the general measurement procedure as

well as the results of this last iteration in detail.
In order to be able to see the imparted discrete momentum on the atoms, it has

to be larger than the initial momentum distribution of the cloud. Since our pancake
spacing is on the order of 4µm, the imparted momentum is on the same order as the
Fermi momentum of a degenerate Fermi gas and thus it is not possible to observe this
effect with such a cloud. Thus we produce a Bose-Einstein condensate of molecules,
which has a much narrower momentum distribution and is therefore better suited.
Then by doing a time-of-flight (TOF) image of the cloud, it is possible to separate
the momentum peaks and thus evaluate the relative populations.
To produce the mBEC, the evaporation is done in the dipole trap down to a

trap depth of about V0 ≈ 120 nK at a magnetic offset field close to the resonance
(B = 795 G) where the scattering length is large and positive, and we end up with
a mBEC of ∼ 8000 molecules.
To let the molecules expand slowly, we lower the trap depth within 25 ms further

down to V0 ≈ 30 nK to decrease the chemical potential µ before switching off the
trap. Simultaneously, we ramp down the magnetic offset field to B = 650 G where
the molecules are still stable but the scattering length is smaller to decrease the
mean-field interaction of the mBEC during the expansion.
Then immediately after the dipole trap is switched off, the pulse is applied with

the pancake beams. Its length is controlled to be between 11µs and 101µs via
the AOM switch which can be set in 1µs steps. After a TOF of 10 ms relative to
off-switching the dipole trap, an absorption image is taken along the pancake beam
axis. To image the molecules, 3 ms before taking the absorption image we ramp
the magnetic field back up to B = 770 G. In Figure 4.5 one can see (averaged)
absorption images of our last iteration of the measurement. In the case when there
is no pulsed standing light wave applied, the cloud just expands isotropically with
a mean momentum prms. When applying the pulsed standing light wave however,
symmetric diffraction peaks emerge with momentum ±2n~kPC. From the spacing
between the peaks, the relative height of the diffraction orders and the applied pulse
durations we can then obtain an estimate of the pancake depth and the spacing as
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a) b)

z
x Uavg = 193mVno pulse

Figure 4.5.: Emergence of Kapitza-Dirac diffraction when turning on the
pulsed standing wave. a) TOF picture when no pulse is applied.
The black data inlay is an integration along the vertical axis. b) TOF
picture when a pulse is applied. The emergence of symmetric, equally
spaced diffraction peaks can be observed. Both pictures represent an
average over ∼ 75 shots.

explained in Section 4.4.1.
Because we use the AOM in front of the fiber as our pulse shutter but the PID-

feedback gets its signal from the photodiode after the fiber, we are not able to
stabilize the power in the pancake beams during the pulse. That means that the
total power in the pancake beam varies from shot to shot by up to 20 % but as the
power fluctuations within each pulse are small we assume a constant pancake depth
V0 within each pulse. Thus we also record the averaged integrated voltage Uavg
within a time of 200µs on the photodiode for each shot. We make sure that each
pulse duration is completely captured within this 200µs time window and thus Uavg
is then a decent approximation of the pulse area β. Therefore by binning the data
according to this averaged integrated voltage Uavg using a bin size of 20 mV with a
MATLAB script and taking the average for each bin, we are able to increase the
SNR of the data and look at the evolution of the diffraction pattern for increasing
pulse areas β.
For each bin, the integrated line profiles along the vertical axis are fitted using

a model which describes the population of the diffraction peaks according to the
simple approximation of equation (4.7)

f (z) = bg + A ·
±4∑

n=0,±1,...
J2
n (β/2) · exp

[
−(z − (z0 + n∆z))2

2σ2

]
, (4.8)

where the fit parameters are defined as follows: bg is the background, A is the
amplitude, ∆z = tTOF · prec/mLi2 is the distance between adjacent peaks, β is the
total pulse area in units of ~, z0 is the position of the center peak and σ is the
width of each Gaussian peak. For the last iteration of the measurement, the pulse
duration was scanned between 11 and 101µs in steps of 10µs and the average power
in the pancake beams was about P ≈ 355 mW. This lead to values between 33 mV
and 292 mV for the averaged photodiode voltage Uavg. In Figure 4.6 the result of
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Figure 4.6.: Evolution of the diffraction pattern for different pulse areas. In
a) no pulse was applied. In b)-f) the pulse area β which is connected to
Uavg was varied. This was done by scanning the pulse duration between
11 and 101µs and having a varying power in the pancake trap beam,
fluctuating around a mean value of P ≈ 355 mW.

this fit for a selection of values of Uavg is shown. One can see that the height
of the zeroth diffraction order shrinks for increasing pulse areas and that higher
diffraction orders begin to emerge symmetrically. In panel f), one can see that there
is even a revival of the zeroth order momentum peak for large pulse areas. Although
the position of the peaks is reproduced well by the fit, the relative heights of the
diffraction peaks differ from our simplified model. Hence a numerical approach
would be needed to reproduce the heights correctly. Nevertheless, we used these
fits to obtain information about the pancake spacing dPC and the trap depth V0 of
the pancakes. First, we inferred the lattice wavelength λPC and thus the pancake
spacing dPC = λPC/2 using the fit parameter ∆z which corresponds to the distance
between adjacent peaks. One can calculate the lattice wavelength to be

λPC = 4π · ~ · tTOF

mLi2∆z , (4.9)

using the definition of the lattice vector kPC = 2π/λPC and converting ∆z from pixel
to micrometer using the known magnification of the imaging setup (see Section 3.4).
Therefore, λPC is linear in the magnification resulting in an error ∆λPC on the order
of 10 % due to the uncertainty of the magnification in this imaging axis. In Figure
4.7 a) the result of the wavelength calculation is shown. One can see from the
saturation of the curve that this method is more reliable for longer pulses when
more peaks are present. Hence we only used the values above Uavg = 170 mV to fit a
constant value. This results in a pancake spacing dPC = λPC/2 = (3.6± 0.36) µm,
where the error is dominated by our estimated magnification uncertainty of 10 %.
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Figure 4.7.: Estimation of the lattice wavelength λPC and the trap depth V0.
a) Lattice wavelength λPC versus the averaged photodiode signal Uavg.
The blue line is a fitted constant to the values above Uavg = 170 mV. b)
Atomic trap depth V0 in units of the atomic recoil energy Erec versus the
averaged photodiode signal Uavg. The blue line represents a constant fit
to the data.

Within our magnification uncertainty this is in good agreement to our Mathematica
calculation of dtheoPC = 3.9µm and thus we can conclude that our alignment of the
intersection angle is very close to what we planned for since the pancake spacing
depends only on this angle (see equation (2.50)).
In addition to the pancake spacing, we can also roughly estimate the depth of

the pancake potentials V0 and compare it to our projected depth at the given beam
power. The trap depth V0 can be calculated from the fit parameter β as

V0 = β~
τ
. (4.10)

Because we want to calculate V0 in units of the atomic recoil energy Eatom
rec = ~2k2

PC
2mLi

,
we have to take into account that the potential the molecules experience is twice as
deep as the atomic trap depth, hence V mol

0 = 2V atom
0 . To calculate Eatom

rec we took the
value of kPC we obtained from the inferred lattice wavelength λPC and τ was taken
as the averaged pulse duration at each Uavg. The result of this estimated atomic
trap depth V0 for the different pulse areas Uavg can be seen in Figure 4.7 b). The
oscillation of the estimated trap depth V0 is due to the shot-to-shot variations of the
applied pulse power. Its mean value is (V0/Erec)atomexp = 8.55± 1.71 at a mean power
of P ≈ 355 mW where the error - which is larger than the fluctuation of the data
around the mean - is again given by the magnification uncertainty of the imaging
setup. This is of course only a crude approximation since additional systematic errors
due to our simplified approach are neglected. A calculation of the trap depth with
Mathematica at this beam power however yields (V0/Erec)atomtheo = 19.38. Therefore
in the experiment we are about a factor of 2.27± 0.46 smaller than expected. This
would lead e.g. to a factor of 1.5 smaller trap frequencies. This is in good agreement
with the factor of 1.8 we got from our trap frequency measurement. However we
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have not investigated so far where this deviation comes from since it should not
limit us to reach the regimes we planned for in the experiment.
In summary, we concluded with this measurement that we have aligned the pan-

cakes as best as possible with the dipole trap and thus we proceeded to investigate
how we can load a single pancake.

4.5. Counting the Filled Pancakes: Radio-Frequency
Tomography

After successfully loading atoms into our pancake trap and improving the alignment
via the measurement explained in Section 4.4, we wanted to investigate how the
atoms are distributed over the individual pancakes when we do the transfer. Thereby
we obtain a tool to count how many of the pancakes we have to deplete in order to
prepare a single pancake. This will set a limit on the efficiency and time it takes to
prepare a single pancake.
The idea of this measurement is to impose a magnetic field gradient in vertical di-

rection2 and hence spatially change the resonance frequency for radio-frequency (rf)
transitions between the three lowest hyperfine states. If the difference in resonance
frequency between adjacent pancakes is larger than the width of the rf-transition,
it is then possible to selectively address each pancake by applying an rf-pulse at
its resonance frequency. By preparing all the atoms in state |2〉 and driving the
transition to the unoccupied state |3〉, one can then measure the atom number in
each pancake by scanning over the applied rf-frequency.
In the following, the basics of rf-transitions are briefly summarized first and the

calibration of our rf-setup is discussed. Subsequently, the experimental sequence and
our evaluation method is explained in more detail. At last the results are presented
and their implications for the short and long term stability for the pancake trap is
discussed.

4.5.1. Basics on Radio-Frequency Transitions

In the experiment, we operate at magnetic fields B > 100 G where in 6Li the three
lowest hyperfine states |1〉, |2〉 and |3〉 only differ by their nuclear spin which is
decoupled from the electron spin. Driving transitions between these states hence
corresponds to flipping the nuclear spin and can be described by a magnetic dipole
transition, making it effectively a two-level system3. The oscillatory electro-magnetic
field is provided by an rf-antenna inside the experiment chamber. When applying a
frequency which is resonant to the energy difference between two states, the atoms
will start to oscillate between these states which can be described by Rabi oscilla-
tions.

2This direction is in the following refered to as the z-direction.
3The splitting between the states is on the order of 80 MHz and thus far bigger than the width
of the transitions.
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Theory of Rabi Oscillations

Rabi oscillations can be described in the framework of a two-level system with a
harmonic perturbation V (t) ∝ sin (ωt) [Bra03]. If the atom was initially in the
ground state |g〉, the coupling with the oscillatory field leads to a superposition
|ψ(t)〉 = a(t) |g〉 + b(t) |e〉. The probability for the atom to be in the excited state
|e〉 after application of the resonance frequency νres for a time t is then given by

P|e〉 = |b(t)|2 = sin2
(

Ωt
2

)
, (4.11)

where Ω is the so called Rabi frequency. The Rabi frequency Ω depends in essence
on the strength of the coupling and thus scales linearly with the amplitude of the
applied oscillatory magnetic field B. Since B scales with the applied rf-power P as
B ∝

√
P , we can achieve large Rabi frequencies by applying strong rf-pulses. The

time required to completely invert the population is called a π-pulse and its time is
given by tπ = 2π/Ω. Therefore one is only limited by the applicable rf-power and
hence we took great care to optimize our rf-setup [Heu11].
Detuning the driving field from resonance by ∆ leads to a decreased transfer

efficiency and faster oscillations, modifying equation (4.11) to [Met99]

P|e〉 =
(

Ω
Ωeff

)2

sin2
(

Ωefft

2

)
, (4.12)

where Ωeff =
√

Ω2 + ∆2 is the effective Rabi frequency.

Application to the RF-Tomography
In our rf-tomographic measurement, instead of having a mixture of atoms in |1〉 and
|2〉, we start with atoms only in state |2〉 and transfer them into the unoccupied
state |3〉.
To determine the resonance frequency of the |2〉 − |3〉 transition, an ultracold

mixture of atoms in |1〉 and |2〉 is loaded into the pancake trap. Interactions between
the states can lead to a loss of atoms and coherence4 as well as a shift of the resonance
frequency5. Therefore we remove the atoms in state |1〉 by shining in a resonant pulse
with the imaging beam6 which leaves the atoms in state |2〉 unaffected. Subsequently,
a 25 ms long rf-pulse - corresponding to a Fourier limited width of∼ 40 Hz - is applied
which transfers atoms into the previously unoccupied state |3〉. On resonance this
leads to a loss of atoms in state |2〉 when scanning the rf-frequency. The resonance
frequency of the transition is then determined using a Lorentzian fit and the exact
magnetic field can be inferred using the Breit-Rabi formula [Her08]. Note that
this formula is only for the homogeneous case and does not include effects like the
4Collisions between atoms project the superposition state ψ back into the states |1〉 and |2〉.
5Also known as clock shifts [Ket08]. They can be used as a sensible measurement method to
detect interaction energies in rf-spectroscopy e.g. [Zür13].

6The momentum transfer from the scattering gives enough kinetic energy to kick the atoms out
of the trap.
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trapping potential or inhomogeneities in the magnetic field. This leads to systematic
errors which would have to be included if one was interested in an absolute magnetic
field. However, in our case we are only interested in the relative frequency differences
at a fixed magnetic field and thus we did not investigate these systematic errors.
A typical measurement of the resonance frequency at a given magnetic field can be
seen in Figure 4.8 a). Here the resonance frequency was νres = 84.614732 MHz with
an error of 11 Hz and the magnetic offset field was calculated using the Breit-Rabi
formula to be B = 526.692 G. The applied rf-power was set to −29 dBm at the
source7, corresponding to a Rabi frequency of about Ω ≈ 2π · 31 Hz. The lifetime of
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Figure 4.8.: Calibration of the resonance frequency and decoherence time.
a) Frequency sweep across the resonance for the |2〉 -|3〉 transition. The
resonance frequency was determined via a Lorentzian fit and was used to
infer the magnetic field via the Breit-Rabi equation [Her08]. b) Rabi os-
cillations of the |2〉 -|3〉 transition at the resonance frequency. A damped
sine function was used to fit the data points and determine the Rabi
frequency Ω and coherence time τcoh. Note that the applied rf-power in
a) is about a factor 1000 smaller than in b) and thus the Rabi frequency
in a) is only Ω ≈ 2π · 31 Hz.

the hyperfine states is much larger than any timescales in the experiment, and thus
the natural linewidth of the transition is negligible. Because the Fourier limited
width of the applied pulse is much smaller than the FWHM = 196 Hz of the rf-
transition, the rf-width is solely limited by magnetic field inhomogeneities in the
experiment and the difference in magnetic moment ∆µ|2〉−|3〉mag . In our case of the
three lowest hyperfine levels of 6Li, in a good approximation only the nuclear spin
gets flipped. Thus the magnetic field sensitivity is very small because the coupling
of the nuclear spin to the magnetic field is much weaker than e.g. the coupling of
the electron spin. In combination with our magnetic field stability on the order of
10 mG, this enables us to achieve these small rf-transition widths. Note that the
transition can also be broadened due to saturation effects if the driving force is too
strong.
7This is not the final power that reaches the rf-antenna since the signal is then also amplified and
impedance matched to the antenna.
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Apart from the pulse duration and the detuning, the transfer efficiency is also
affected by decoherence effects. Due to inhomogeneities in the magnetic field, the
atoms accumulate different phases and thus the signal dephases. In a completely
dephased sample, the atoms will then be in a 50/50 mixture between the states.
In addition, decoherence is also introduced due to collisions between atoms which
speeds up this process. To determine the coherence time τcoh in our setup, we prepare
atoms in state |2〉 as before and apply a varying pulse duration τ to see how the
population in state |2〉 oscillates. This measurement was done at the same magnetic
field we used to determine the resonance frequency νres. Because the coherence time
is on the order of ms, we had to increase the power in the rf-pulse considerably by
29 dBm (factor ∼ 1000) in order to have a large enough Rabi frequency to achieve
a tπ which is small compared to τcoh. The result of this measurement can be seen in
Figure 4.8 b). The oscillations were fitted using a damped sine function and resulted
in a Rabi frequency Ωeff = 2π · 886 Hz and a coherence time τcoh = (17.7± 1.9) ms.
Hence if we want to do coherent transfers later on, we should limit our pulse lengths
to be shorter than the coherence time τcoh.
One should note that decoherence effects are actually important in the experiment

because when driving a coherent pulse to an ultracold Fermi gas, there will be no s-
wave interaction between the atoms since they will all be in the same superposition
state [Ket08]. Therefore a decoherence mechanism is needed to develop a true
mixture of states and thus have interactions. Being no longer identical, the atoms
can then interact via s-wave collisions which will further reduce the coherence.

4.5.2. Experimental Results
To perform the rf-tomography, we prepare a degenerate Fermi mixture in states
|1〉 and |2〉 in the dipole trap. The evaporation is done down to a trap depth of
0.12µK. Thus we have a very cold sample of only about ∼ 20, 000 atoms. This
ensures that the atoms in the pancakes are close to the center in each pancake
and thus well separated. The rf-resonance frequency can then be seen as constant
for each pancake which is important to achieve a sufficient rf-resolution although
it results in low atom numbers and thus a bad signal-to-noise ratio (SNR) for the
imaging.
Then the rf-tomography is performed which is illustrated in Figure 4.9. Immedi-

ately before the transfer into the pancake trap, the dipole trap depth is ramped up
within 200 ms to a trap depth of 3µK. This compresses the atomic cloud in all three
dimensions and hence reduces its vertical extension, thus ensuring that we load as
few pancakes as possible, but also leads to heating which we hope does not affect
the measurement to strong. After this ramp, the power in the pancake beams is
ramped up to Ptotal ≈ 3.36 W and the dipole trap is turned off slowly.
Before shooting out the atoms in state |1〉 by applying the resonant imaging pulse,

the magnetic offset field is set to B ≈ 527 G where the scattering length a12 has its
zero-crossing. Then the imaging light is applied for 10µs which is sufficient to kick
out all atoms in |1〉. Subsequently, a magnetic field gradient dB/dz is applied with
the MOT coils to shift the resonance frequency across the pancakes. Since the center
of the MOT does not coincide with the center of the dipole trap, the gradient also
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shifts the overall resonance frequency compared to the calibration in Figure 4.8. In
our current setup, when driving the MOT power supply at a maximal current of
about 30 A, we are able to apply a magnetic field gradient in z-axis in the range
of dB/dz = 40 − 50 G/cm. With our pancake spacing of dPC ≈ 4µm this leads to
a separation between adjacent pancakes in frequency space of about 250 − 350 Hz.
This is just slightly more than the width of our rf-transition (FWHM = 196 Hz)
and thus limits our achievable resolution. In addition to shifting the frequency,
the magnetic field gradient also exerts a force F ∝ dB/dz on the atoms, thus
removing weakly trapped atoms. To be sure that the gradient reaches a constant
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Figure 4.9.: Illustration of the timing graph for the rf-tomography. The
starting point for the sequence is a degenerate Fermi gas as prepared
in Figure 3.1. The horizontal time axis has a scaling as shown in the
bottom right corner. The vertical axes do not scale properly and just
show the qualitative behavior. The gray horizontal lines indicate the
zero values. Note that only the relevant channels to understand the
rf-tomography are shown.

value after the ramp and the atom number is constant, we wait another ∼ 300 ms
before applying the rf-pulse. The rf-power is set to −28.5 dBm to avoid power
broadening of the transition, which corresponds to a Rabi frequency of 2π · 33 Hz
and thus a π-pulse duration of tπ ≈ 30 ms. The rf-pulse duration is chosen to be
tpulse = 12 ms - corresponding to a Fourier limited width of ∼ 100 Hz - as a trade-
off between transferring a large percentage of the atoms while still being mostly
coherent. After the rf-transfer, the voltage in the MOT coils is ramped down again
to the value of the gravitation compensation and the atoms in state |3〉 are imaged
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in-situ along the horizontal MOT axis. The imaging itself imposes two challenges:
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Figure 4.10.: Comparison between a single shot and an average of 50 shots.
a) The profile is an integration along the vertical axis for a single shot.
The inlay is a picture from the CCD camera. b) Average taken of ∼50
shots. The inlay in the profile highlights that the individual pancake
structure cannot be resolved and the separation between pancakes is
only slightly more than 1 pixel. The shots were taken at the center
pancake where the atom number is largest. For the outer pancakes,
the decreased SNR makes the averaging process even more important.

first of all, the atom numbers in each pancake is very small with at most 3000 atoms
per pancake. As a result, the SNR is quite low and it is challenging to have good
fits for a single shot. Furthermore, as the pixel size of the camera is 6.45µm and
the magnification of the imaging is M = 2, adjacent pancakes are only separated by
one pixel. But using a larger magnification would not help since we are not able to
resolve the pancake structure due to our limited resolution in horizontal direction
and thus this would only decrease the SNR further.
To still be able to obtain good results, we post-process all our data using MAT-

LAB. At first, we average all the data taken at each frequency and fit the resulting
atomic clouds along the z-axis using a Gaussian distribution. From this fit we can
infer the atom number, vertical position of the center and the width of the cloud.
Although the fitted width does not represent the actual pancake width as we cannot
resolve it, we can still differentiate the different center positions for two adjacent
pancakes. To make sure that the atom number is calculated correctly, we cross
checked the method with our standard LABVIEW procedure. After that we use
the information of the averaged fits to provide better starting parameters to fit each
individual shot. In Figure 4.10 a comparison between a single shot and an average
of 50 shots can be seen. In the following the results are shown for a measurement
where we repeated the frequency scan approximately 200 times. First we averaged
the images at each frequency over all runs and then obtained the number of atoms,
center position and width of the cloud by fitting the overall data with a Gaussian
distribution like in Figure 4.10.The results of this process are shown in Figure 4.11.
In graph a) the center position of the Gaussian fit is plotted versus the applied
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Figure 4.11.: Results from averaging over all runs. a) Left axis: z position
(center of the Gaussian fit) versus applied rf-frequency. Right axis:
width σz of the Gaussian fit versus applied rf-frequency. The lines
are just guide to the eyes and the detuning is relative to the center
pancake position obtained from the fit in b). b) Number of atoms
in state |3〉 versus applied rf-frequency. The blue line is a fit to the
data as explained in the text and the detuning is relative to the center
pancake position obtained from the fit.

frequency - where the detuning δ is given in respect to the resonance frequency of
the center pancake. This results in a step-function with each step corresponding to
an individual pancakes. As one can see, the steps are not sharp but are of course
smoothed by our limited rf-resolution. In the same graph, also the width σz of
each Gaussian fit is plotted. It is evident that the width increases if one is on the
slope between steps. Note that this width does not represent the actual density
distribution inside a single pancake since the imaging resolution is not good enough
to resolve it. However it still gets larger if one transfers atoms from two pancakes,
which explains the increase between two steps. The distance between each step can
be roughly estimated to be (4.3±0.3)µm which is almost within 1σ of the calculated
pancake spacing of 3.9µm which was already verified in the Kapitza-Dirac diffraction
measurement. Thus the measured pancake spacing is in reasonable agreement with
these measurements and confirms our projected spacing. At larger frequencies above
a detuning of 600 Hz, the errors increase due to the low number of atoms and the
trend of the step-function cannot be trusted.
In graph b), the number of transferred atoms into state |3〉 is shown as a function

of the applied frequency - where the detuning δ is again given in respect to the
resonance frequency of the center pancake. Qualitatively, one can see five distinctive
peaks in atom number, which corresponds to the case when the applied rf-frequency
is resonant with the atoms in one of the pancakes. However as the peak separation of
∼ 300 Hz is on the same order as the FWHM of the rf-transition, the atom number
does not drop to zero between peaks as one transfers atoms from both pancakes.
From the relative height of the peaks, we can conclude that about 80 % of the atoms
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occupy the three center pancakes.
To get more quantitative information, we fit the data making the following as-

sumptions. The distribution of atoms in the dipole trap can be modeled by a
Gaussian distribution with center νENV, width σENV and amplitude A. Because we
directly transfer the atoms from the dipole trap into the pancake traps by ramping
up the power in the pancake beams, this gives us the envelope of the fit. The number
of transferred atoms from each pancake follow a Gaussian distribution as well where
the width σPC is given by the rf transition width. We fix the position of one of
the pancakes at νPC and set a fixed spacing ∆νPC between adjacent pancakes. The
height of each peak is only given by the envelope function. At last we also allow for
a small background bg in atom number. Combining these assumptions then leads
to the fitting function

N|3〉 (ν) = bg + A · e
− (ν−νENV)2

2σ2
ENV ·

e−
(ν−νPC)2

2σ2
PC +

3∑
n=1

e
− (ν−(νPC±∆νPC))2

2σ2
PC

 , (4.13)

where ± indicates a summation over both the negative and positive exponential term
and we include up to 7 possible pancakes. As is evident from the graph, our assump-
tions are justified and the fit is in good agreement with the data. The fit results
for the parameters can be seen in Table 4.1. Using the Breit-Rabi formula one can

fit parameter value
νENV (84.635059± 0.000003) MHz
σENV (373± 8) Hz
νPC (84.635108± 0.000002) MHz
σPC (103± 2) Hz

∆νPC (294± 3) Hz

Table 4.1.: Fit results from the fit in Figure 4.11 a). The errors given are the
1σ errors of the fit.

transfer the results from frequency space into magnetic field differences. Knowing
our magnetic field gradient, we can then translate this further into spatial informa-
tion. The distance between the pancakes is ∆νPC ≈ 294 Hz which corresponds to
a magnetic field difference of ∆B ≈ 18.8 mG. With the estimated pancake spacing
of 4.3µm from graph a), we can infer that our applied magnetic field gradient must
be on the order of dB/dz = ∆B/dPC = 44 G/cm which is in good agreement with
a projected value of db/dz = 43 G/cm using a Mathematica calculation.
Taking the difference between νENV and νPC as the distance between the center

pancake and the dipole trap center, one can estimate the deviation of the two centers
to be less than 0.7µm. The initial cloud size in the dipole trap can be estimated
using σENV to be hODT ≈ 21µm. This explains the occurrence of five peaks very
well since the spacing between peaks is expected to be on the order of 4µm. When
comparing 2 · σPC to the FWHM = 196 Hz of the rf-transition, one can see that the
width of the peaks is slightly higher than one would expect8. This can be explained
8Per definition, FWHM > 2 · σ.
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by positional fluctuations of the pancakes or magnetic field instabilities which smear
out the width when averaging over many runs. Further information on these effects
is given later when we investigate the short term stability of the trap during runs.
But from these results we can already conclude that the positional stability of the
pancake traps must be quite good since any large shifts during the measurement
which lasted over a day would have washed out these features. In addition to looking
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Figure 4.12.: Histogram of all individual shots. The z position is obtained as
the center position from a Gaussian fit. The bin size is 0.5µm. All fits
which did not converge have been excluded from the histogram.

at the results from averaging over all runs, we also fit each shot individually using
the results obtained from the averaging as initial fit parameters. Since the SNR is
very low, a lot of fits do not converge especially for low atom numbers. Hence we
do a post-selection and neglect all fits which do not converge9. The histogram for
the center position can be seen in Figure 4.12. One can clearly distinguish at least
four pancakes with a spacing of about 4− 4.5µm. The pancakes at the edge are not
as pronounced as the ones in the center because there were less atoms and hence
the SNR was worse. That the count rate does not go to zero between pancakes can
again be attributed to the limited rf-resolution and hence the transfer of atoms from
more than one pancake when applying an rf-frequency between adjacent pancakes.

Short Term Stability
During an experiment, the position of the dipole trap as well as the position of the
pancake traps can drift or fluctuate. Since the magnetic field is spatially dependent,
this leads to fluctuations in the resonance frequencies of the pancakes as well. Apart
from that, also the magnetic field itself can vary due to the limited magnetic field
stabilization. To determine the extent of these fluctuations during an experimental
run, we bin together 11 consecutive runs, average them and evaluate the atom
number in the same way as we do when averaging over all runs. Thereby we obtain
9Either a fit parameter hit a restraining bound or σz < 3 or σz > 6.
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a temporal evolution of the fit parameters and can estimate the fluctuations in
frequency space. Since every run has 33 frequency steps and each experimental cycle
has a duration of about 12.9 s, this corresponds to averaging over a time interval of
78 min. For the aforementioned measurement, we measured the evolution of the fit
parameters over ∼ 26 h and the results can be seen in Figure 4.13. If we neglect the
magnetic field instabilities during the run, we can associate the fluctuations of the
fit parameters solely to positional instabilities of the dipole and pancake trap and
thus obtain a lower bound for their short term stability.
From graphs c) & e), one can infer the drifts of the vertical dipole trap center

position. The maximal fluctuation in the dipole trap center position is |δνENV|max =
65 Hz. If one assumes that the magnetic field gradient was constant during all runs,
this corresponds to a fluctuation in the dipole trap center position of at most 1µm
in vertical direction. This is consistent with direct measurements of the dipole trap
center which indicate a similar level of stability. The vertical size of the dipole trap
fluctuates by at most 2.6µm which is on the order of 10 %. This might be caused
by a breathing introduced by ramping up the dipole trap before the transfer or just
by instabilities in the fits.
From graph b) which shows the fluctuation of the center pancake position, its

positional stability can be estimated. This is very important for the deterministic
loading of a single pancake, since any phase shift by more than ∆φ = π/2 between
the beams would lead to sitting between two pancakes instead of filling one. If one
takes again |δνPC|max = 51 Hz as an upper bound, this would correspond to a phase
fluctuation of ∆φ ≤ π/5. Using the rms value δνrms

PC = 24 Hz of the data points, one
obtains a phase fluctuation of about ∆φ ≤ π/12. These small fluctuations over an
extended period of measuring time lead us to believe that we can achieve a good
fidelity in the future for preparing a single pancake. In addition, former measure-
ments with an external test-setup have shown that shot-to-shot phase fluctuations
of the interference fringes were even smaller at ∆φ ≤ π/30 [Sta12].
From graph d) which shows the width of each pancake, we see that we overestimate

the width when averaging over all runs. This can be explained by fluctuations of the
pancake positions as well as magnetic field fluctuations which shifts the resonance
frequencies in the pancakes. Averaging over all runs, this broadens the distribution
around each peak and hence leads to an overestimation of σPC. Hence most data
points have a smaller σPC than the value obtained from averaging over all runs
(blue line). If one takes this into account and takes σPC = 98 Hz as a crude estimate
for the average of the individual fits, then 2 · σPC which is roughly equivalent to
the FWHM coincides very nicely with the FWHM of 196 Hz of the calibrated rf-
transition. Thus the width of each pancake in frequency space is basically given by
the rf-transition width. This further confirms that almost all atoms in each pancake
are tightly packed around the center.
At last, from graph f) we see that the fluctuations of the pancake spacing are

very small on the order of 10 Hz which corresponds to changes less 0.1µm. This can
largely be attributed to the accuracy of the fits, indicated by the large error bars.
In conclusion, the fluctuations while running the experiment seem to be sufficiently

small to prepare a single pancake with good fidelity. Furthermore, no apparent drifts
could be recognized while running the experiment.
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Figure 4.13.: Fluctuation of the fit parameters as a function of measure-
ment time. a) An average of 11 consecutive runs, corresponding to
about 78 min of measurement time, was fitted using equation (4.13).
These fits were then taken to obtain the fluctuations of the fitting pa-
rameters in b)-f). The blue lines in each graph indicate the results
obtained from the overall fit in Figure 4.11 and are listed in Table 4.1.
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Long Term Stability
To evaluate long term drifts, which can occur when turning on and off the experi-
ment, we took a second - somewhat smaller - dataset approximately a week later.
We analyzed the data using the same methods as before and the result of this can
be seen in Figure 4.14. From graph a) which shows the histograms of the center
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Figure 4.14.: Comparison of the two separate measurements. a) Histogram
of the center positions of all individual shots. The bin size is 0.5µm. b)
Number of atoms in state |3〉 as a function of the applied rf-frequency.
The solid lines are fits to the data using equation (4.13).

position of all individual shots, we can see that the peaks of the pancakes coincide
very well in both measurements10. As an upper bound we can estimate the stability
of the pancake position to be better than 0.5µm, which corresponds to a phase drift
∆φ ≤ π/8. This result gives us great confidence to deterministically prepare a single
pancake with high fidelity in the future. The panel b) shows the transferred atom

fit parameter data data
17th October 2012 23th October 2012

νENV (84.635059± 0.000003) MHz (84.635339± 0.000005) MHz
σENV (373± 8) Hz (358± 7) Hz
νPC (84.635108± 0.000002) MHz (84.635405± 0.000002) MHz
σPC (103± 2) Hz (93± 2) Hz

∆νPC (294± 3) Hz (293± 3) Hz

Table 4.2.: Comparison of the fit results from the fits in Figure 4.14 b).
The magnetic field drifted between the measurements which leads to a
shift in the measured frequencies. Note that the fitted frequencies only
allow to make statements about the relative difference in the magnetic
field between the measurements as we did not calibrate the systematic
errors of our setup.

10The difference in height is due to the smaller dataset used in the second measurement.





4. Characterization of the Pancake Trap

number into state |3〉 as a function of the applied rf-frequency and the fit results are
compared in Table 4.2. It is apparent that the profile has shifted by ∼ 290 Hz to
higher frequencies, which is one the same order as the pancake spacing ∆νPC. Be-
cause the position of the dipole trap is better than 1µm, this indicates that we have
long term drifts of the magnetic field. The shift in frequency space corresponds to
∼ 19 mG within a week, which is reasonable with our magnetic field stability of the
Feshbach coils better than 10 mG for short terms. However this means that we have
to recalibrate the rf-transition frequency each time we want to do an radio-frequency
dependent measurement.
Apart from this shift, one can see that the width of each pancake is smaller in

our second measurement which is nicely visible in the graph in the form of deeper
dips between two peaks. This is because we took less data the second time and thus
fluctuations in the pancake position do not smear out the peaks that much. When
comparing the pancake spacing, it is evident that it is constant over long times.

4.6. Towards the Preparation of Only a Single Pancake
In the future we want to do experiments with atoms only in a single pancake. Then
we can with the help of two additional perpendicular lattice beams create a single
layer of a two-dimensional optical lattice. Imaging this lattice from the top will then
enable us to investigate the physics in a single lattice without the averaging over
many realizations of the lattice at the same time.
There are in principle two paths for us to achieve this, either by directly loading

only one pancake or by removing atoms from all but one pancake after filling several
ones during the transfer. Both options are possible for future experiments and in
the following our current progress with both methods is shortly summarized.

Transfer of a mBEC
In order to directly load a single pancake, one has to reduce the size of the cloud in
vertical direction sufficiently before the transfer. In a mBEC all molecules have the
same macroscopic wave function and there is no Fermi pressure. Therefore the size
of the cloud is smaller for a mBEC than it is for a degenerate Fermi gas with the
same number of atoms. But even for a mBEC the vertical size is larger than the
size of a single pancake, therefore we create a time-averaged potential with larger
horizontal extensions by modulating the ODT beam with an AOM in the horizontal
plane. This increases the size of the cloud in the horizontal plane by a factor of two
and thus decreases the size in the vertical direction. In addition to this ’painting’,
the center of the dipole trap can be shifted by applying a magnetic field gradient
with the MOT coils. This is used to better overlap the dipole trap with the center
pancake during the transfer.
We then prepare a mBEC in this time-averaged potential and repeat the rf-

tomography measurement from Section 4.5. Because any interaction in the cloud
leads to a shift and broadening of the rf-transition, we need again a one-component
Fermi gas to perform the rf-tomography. Therefore we remove one component with
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a resonant light pulse. In the case of a mBEC however, one cannot go to the zero-
crossing of the scattering length since above the resonance there is none and the
molecules are only stable close to the resonance on the BEC side. Thus in order
to minimize the heating transferred to the atoms in state |2〉 when kicking out the
atoms in state |1〉, we ramp the magnetic field across the resonance to B ≈ 1000 G
where the molecules dissociate and the interaction is as small as possible. We then
apply the resonant light pulse to shoot out the atoms in state |1〉 and perform the
same tomographic measurement as described in Section 4.5.
In Figure 4.15 the number of atoms in state |3〉 is plotted versus the applied

rf-frequency - shown as the detuning δ relative to the center pancake resonance
frequency - for a shift gradient which was optimized to load as much atoms as
possible into only one pancake. As one can see it is possible to load a large fraction
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Figure 4.15.: RF-tomography for a mBEC in the pancake traps. The trans-
ferred number of atoms into state |3〉 is plotted versus the applied
rf-frequency - given as the detuning δ relative to the center pancake
resonance frequency. Each data point is an average of about 10 shots
and the error bars are given by the standard error of the mean. Almost
all atoms are in the center pancake with only a small population in the
off-center pancakes.

of the atoms into the center pancake and thus with this technique we are already
close to loading a single pancake. However there are still some atoms in the adjacent
pancakes and the direct loading technique can only be done with a mBEC which is
not desirable for some of the envisioned experiments.

Post-Selection of a Single Pancake
The other possibility to obtain only a single populated pancake is to selectively
remove the atoms from all but one pancakes after the transfer. This can be done
in several ways: either one transfers the atoms from the off-center pancakes into
a third unoccupied state and then empties them using a resonant imaging pulse
which ’kicks’ the atoms out of the trap or one uses a third hyperfine state (e.g.
|3〉− |6〉) to create a three-component mixture where the atoms are then lost due to
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inelastic collisions. Both post-selection methods rely on a sufficient separation of the
pancakes in frequency space in order to exclude the center pancake when doing the
transfers. Currently the frequency separation and thus the rf-resolution is limited
by the applicable magnetic field gradient with the MOT coils. The power supply
we used for the measurements in this thesis was a Voltcraft SPS 1560 PFC which
can supply a voltage up to 15 V and can drive currents up to 60 A. With our MOT
coil setup we are limited by the maximal voltage of the power supply as we can
only drive currents up to approximately 32 A. Therefore to be able to drive larger
gradients in the future, we are currently exchanging this power supply for a Delta
Elektronica SM45-70 B. It can supply voltages up to 45 V and drive currents up to
75 A. Therefore we should be able to increase the gradient for short times by up to
a factor of three compared to our previous measurements.
In order to get a feeling on how a larger magnetic field gradient would affect the

tomographic measurement, we scaled our results from Section 4.5 by this increased
gradient as can be seen in Figure 4.16. As one can see already with a scaling
factor of two (blue curve) and thus twice the current we should be able to separate
the pancakes sufficiently to do the post-selection to obtain a single pancake. In
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Figure 4.16.: Effect of a larger gradient on the rf-tomography. The black
curve is our measured result (see Section 4.5). The colored curves
show how this measurement would look like if one could apply a by
the scaling factor larger gradient. Already an increase of the gradient
by a factor of two should be sufficient to separate the pancakes well
enough to selectively remove the off-center pancakes without affecting
the center pancake.

conclusion, using the rf-tomography we showed that we load at most five pancakes
with a degenerate Fermi gas and three pancakes with a mBEC where a large fraction
is already in the center pancake. With the techniques described in this chapter we
should thus be able to prepare a degenerate Fermi gas or mBEC in a single pancake
as soon as the new power supply is tested. In combination with the lattice beams
which are currently set up, this will enable us to start our investigation of the physics





4. Characterization of the Pancake Trap

in a single two-dimensional lattice very soon.





5. Conclusion and Outlook
During the course of this thesis we implemented the optical setup to create the
pancake shaped quasi 2D dipole traps and set up the power stabilization for the
pancake beam. In addition we also measured the laser noise to check that we are
not limited by noise induced heating in the experiment.
After being able to load atoms into the vertical lattice of these pancake traps, we

performed a Kapitza-Dirac diffraction measurement on a mBEC. The presence of
the vertical lattice was beautifully observable and we used the measurement to verify
our pancake spacing of about 4µm as well as estimate the trap depth. Comparing
the estimated trap depth to a calculation, this was used as a further alignment tool
for the pancake trap. Our next goal was then to see how many of the pancakes we
load and what the populations in each are. Therefore we used a radio-frequency
tomographic measurement. For this we loaded a single spin state of a Fermi gas into
several pancakes and applied a magnetic field gradient with the MOT coils. This
shifted the resonance frequency in each pancake and it was possible to selectively
transfer atoms in each pancake into a previously unoccupied state which was then
imaged using in-situ absorption imaging. This enabled us to count the population in
each pancake and gave us a tool to detect how many pancakes we load. In addition,
from fluctuations of the pancake positions during a run and from a repeat of the
measurement after a week had passed, we were able to estimate the short and long
term stability of the pancake trap position. We measured that the short term phase
stability during a run was on the order of ∆φ ≤ π/12 and that long term drifts
were smaller than ∆φ ≤ π/8. Since these phase drifts are much smaller than half
the pancake spacing ∆φ = π/2, this should enable us to repeatedly load the same
pancakes and thus implement a method to deterministically prepare an ultracold
Fermi gas in a single pancake by removing the atoms in all but one pancake after
the transfer. But we also observed that in order to implement such a method,
we need a larger magnetic field gradient to separate the pancakes completely in
frequency space and therefore we implemented recently a new power supply for our
MOT coils with which we can drive such gradients.
After moving the experiment to our new labs in December, we began to set up the

experiment again and were able to transfer atoms into the pancake traps in March.
After realigning the pancake traps with the optical dipole trap, we characterized
these in more detail than before the move, measuring the trap frequencies and the
lifetime.
The measurement of the trap frequencies resulted in an aspect ratio ωx : ωy : ωz ≈

1.2 : 1 : 357, thus confirming that the traps are almost round and show only a slight
ellipticity as well as proofing the tight confinement in the vertical axis. The lifetime
in the trap was measured to be on the order of 50 s. We estimated the effect of hole
heating and concluded that we should be able to observe the lattice dynamics before
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heating becomes too severe.
In addition, we did the rf-tomography also with a mBEC in the trap and observed

that we can load almost all atoms in a single pancake with only a small population
in the off-center pancakes.
While writing this thesis, the first lattice beam was already set up and atoms

have been successfully trapped in this lattice beam. In addition, the new power
supply for the MOT coils was installed which allows us to apply stronger magnetic
field gradients and therefore should enable us to prepare a single pancake in the
near future due to the improved rf-resolution. Furthermore, microwave transitions
into the low-field seeking states |4〉 − |6〉 have been successfully driven with the
implemented rf-setup and the second lattice beam is currently being set up.

Outlook
In the near future, as soon as the second lattice beam is set up we should be a able
to load atoms into a single layer of a quasi two-dimensional optical lattice. This
will allow us to investigate the physics in the lattice directly when imaging in the
top-down axis without the need of averaging over many realizations of the lattice.
Therefore we will also implement a new objective (see Figure 5.1) into the experiment
soon which will increase the resolution for the top-down imaging. This objective
was designed both for λ = 671 nm and λ = 1064 nm light and thus it will also be
possible to project a custom lattice via a spatial light modulator into the pancake
layer. We plan to implement this in the future to prepare custom lattice geometries
which we can change during the experiment and which will in combination with the
increased resolution enable us to obtain a single-site resolution for the lattice. By

Figure 5.1.: Illustration of the new objective with the optical lattice. The
new objective was designed both for λ = 671 nm and λ = 1064 nm
light and thus one can also project a custom lattice via a spatial light
modulator into the pancake plane. One can see that the objective is
mounted very close to the Feshbach coils, which allows for the large
numerical aperture and thus high resolution. The picture is taken from
[Rie10].
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loading first a two-component mixture into the lattice, we hope to see the transition
from a superfluid into a fermionic Mott-insulator in-situ via the density profile1.
So far the transition to the fermionic Mott-insulator state has only been shown
indirectly by measuring e.g. the double occupancy or the compressibility of the
cloud [Jör08, Sch08]. After that we want to start investigating a three-component
mixture in the 2D optical lattice where we hope to observe effects like Quantum
Zeno loss-blocking, color superfluid phases or off-site trions [Kan09, Poh13].

1Compare to [Gem09] for the bosonic case.







A. Fundamental Constants and
Properties of Lithium

The following table shows a list of the constants which are used throughout this
thesis. The fundamental constants are taken from [NIS] whereas the properties of
the D2 line of 6Li can be found in [Geh03].

Symbol Value Meaning
~ 1.054571628×10−34 Js Planck’s constant over 2π
h 6.62606896×10−34 Js Planck’s constant
c 2.99792458×108 m/s Speed of light in vacuum
kB 1.3806504×10−23 JK−1 Boltzmann’s constant
a0 0.52917720859×10−10 m Bohr’s radius
ε0 8.854187817×10−12 Fm−1 Electric constant
me 9.10938215×10−31 kg Mass of a electron
mLi 9.98834146×10−27 kg Mass of a 6Li atom
ΓLi 2π · 5.8724×106 s−1 Natural linewidth of the D2 line of 6Li
λLi 670.977338×10−9 m Wavelength of the D2 line of 6Li in vacuum
Trec 3.53581152×10−6 K Recoil temperature of the D2 line of 6Li
IS 25.4×Wm−2 Saturation intensity of the D2 line of 6Li
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Figure B.1.: Schematic of the photodiode circuit. The photodiode is oper-
ated with a reverse bias voltage of −5 V. A resistor Rlimit = 5 kΩ
is put in front of the diode to limit the achievable current and thus
protect the photodiode. At small photo currents the voltage drop
across this resistor is negligible and the complete voltage is applied
at the photodiode for reversed bias. An operational amplifier OP27
with an RC-feedback converts the photo current into an output voltage
Uout = RF · Iphoto. As feedback parameters we chose RF = 15 kΩ and
CF = 33 pF. This leads to a 3dB-bandwidth of the transimpedance
amplifier of f−3dB = 1

2πRFCF ≈ 3.2 MHz which is sufficient for our ap-
plications.
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Figure B.2.: Sketch of the position of the noise detection for the NUFERN.
The beam was focused on the photodiode such that its focal size was
smaller than the active area of the photodiode. The lens was mounted
on an adjustable lens tube to gain control of the beam position in the
x-y-plane.
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Figure B.3.: RIN measurement of the NUFERN noise in front and after
the high power fiber. a) Sampling frequency fs = 196.315 kHz and
moving average over a span of 31 Hz. b) Sampling frequency fs =
3.125 MHz and moving average over a span of 500 Hz. The NUFERN
was free running at P = 25 W. The red data points where obtained
detecting the beam before going through the high-power fiber whereas
the blue data points where obtained detecting the beam after the high-
power fiber. One can see that the high-power fiber has no effect on the
laser noise.
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Figure B.4.: RINmeasurement of the photodiode background noise in front
and after the high power fiber. The sampling frequency was fs =
3.125 MHz and a moving average was taken over a span of 500 Hz to
smooth the curves. The spikes stem from a ground loop between the
photodiode box and the laptop where the TiePie is connected. The
photodiode box was grounded on the optical table whereas the laptop
was grounded via its power supply. Thus the spikes depend on the
detection position and they are larger after the fiber (blue) than in
front of the fiber (red). When the power supply of the laptop was
removed, the overall noise floor was decreased and the spikes become
less pronounced (black).
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